Suppr超能文献

审计与反馈和临床决策支持之间概念性和可计算性交叉融合的案例

The Case for Conceptual and Computable Cross-Fertilization Between Audit and Feedback and Clinical Decision Support.

作者信息

Brown Benjamin, Peek Niels, Buchan Iain

机构信息

Health e-Research Centre, Farr Institute for Health Informatics Research, University of Manchester, UK.

出版信息

Stud Health Technol Inform. 2015;216:419-23.

Abstract

Many patients do not receive care consistent with best practice. Health informatics interventions often attempt to address this problem by comparing care provided to patients (e.g., from electronic health record data) to quality standards (e.g., described in clinical guidelines) and feeding this information back to clinicians. Traditionally these interventions are delivered at the patient-level as computerized clinical decision support (CDS) or at the population level as audit and feedback (A&F). Both CDS and A&F can improve care for patients but are variably effective; the challenge is to understand how the efficacy can be maximized. Although CDS and A&F are traditionally considered separate approaches, we argue that the systems share common mechanisms, and efficacy may be improved by cross-fertilizing relevant features and concepts. We draw on the Health Informatics and Implementation Science literature to argue that common mechanisms include functions typically associated with the other system, in addition to other features that may prove fruitful for further research.

摘要

许多患者未得到符合最佳实践的护理。卫生信息学干预措施通常试图通过将提供给患者的护理(例如,来自电子健康记录数据)与质量标准(例如,临床指南中所述)进行比较,并将此信息反馈给临床医生来解决这一问题。传统上,这些干预措施在患者层面以计算机化临床决策支持(CDS)的形式提供,或在人群层面以审核与反馈(A&F)的形式提供。CDS和A&F都可以改善患者护理,但效果各异;挑战在于了解如何将疗效最大化。尽管传统上CDS和A&F被视为不同的方法,但我们认为这些系统具有共同的机制,通过融合相关特征和概念可能会提高疗效。我们借鉴卫生信息学和实施科学文献,认为共同机制除了包括可能对进一步研究富有成果的其他特征外,还包括通常与另一个系统相关的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验