Suppr超能文献

多方法实验室用户对可操作临床绩效信息系统的评估:对可用性和患者安全的影响。

Multi-method laboratory user evaluation of an actionable clinical performance information system: Implications for usability and patient safety.

机构信息

Health e-Research Centre, Farr Institute of Health Informatics Research, Centre for Health Informatics, University of Manchester, Manchester, UK; NIHR Patient Safety Translational Research Centre Greater Manchester, University of Manchester, Manchester, UK.

Health e-Research Centre, Farr Institute of Health Informatics Research, Centre for Health Informatics, University of Manchester, Manchester, UK.

出版信息

J Biomed Inform. 2018 Jan;77:62-80. doi: 10.1016/j.jbi.2017.11.008. Epub 2017 Nov 13.

Abstract

INTRODUCTION

Electronic audit and feedback (e-A&F) systems are used worldwide for care quality improvement. They measure health professionals' performance against clinical guidelines, and some systems suggest improvement actions. However, little is known about optimal interface designs for e-A&F, in particular how to present suggested actions for improvement. We developed a novel theory-informed system for primary care (the Performance Improvement plaN GeneratoR; PINGR) that covers the four principal interface components: clinical performance summaries; patient lists; detailed patient-level information; and suggested actions. As far as we are aware, this is the first report of an e-A&F system with all four interface components.

OBJECTIVES

(1) Use a combination of quantitative and qualitative methods to evaluate the usability of PINGR with target end-users; (2) refine existing design recommendations for e-A&F systems; (3) determine the implications of these recommendations for patient safety.

METHODS

We recruited seven primary care physicians to perform seven tasks with PINGR, during which we measured on-screen behaviour and eye movements. Participants subsequently completed usability questionnaires, and were interviewed in-depth. Data were integrated to: gain a more complete understanding of usability issues; enhance and explain each other's findings; and triangulate results to increase validity.

RESULTS

Participants committed a median of 10 errors (range 8-21) when using PINGR's interface, and completed a median of five out of seven tasks (range 4-7). Errors violated six usability heuristics: clear response options; perceptual grouping and data relationships; representational formats; unambiguous description; visually distinct screens for confusable items; and workflow integration. Eye movement analysis revealed the integration of components largely supported effective user workflow, although the modular design of clinical performance summaries unnecessarily increased cognitive load. Interviews and questionnaires revealed PINGR is user-friendly, and that improved information prioritisation could further promote useful user action.

CONCLUSIONS

Comparing our results with the wider usability literature we refine a previously published set of interface design recommendations for e-A&F. The implications for patient safety are significant regarding: user engagement; actionability; and information prioritisation. Our results also support adopting multi-method approaches in usability studies to maximise issue discovery and the credibility of findings.

摘要

简介

电子审核和反馈(e-A&F)系统在全球范围内被用于改善医疗质量。它们根据临床指南衡量卫生专业人员的绩效,并且一些系统会建议改进措施。然而,对于 e-A&F 的最佳界面设计知之甚少,特别是如何呈现改进建议。我们为初级保健开发了一种新的基于理论的系统(绩效改进计划生成器;PINGR),它涵盖了四个主要界面组件:临床绩效摘要;患者列表;详细的患者信息;以及改进建议。据我们所知,这是第一个报告具有所有四个界面组件的 e-A&F 系统。

目的

(1)使用定量和定性方法相结合,评估目标最终用户对 PINGR 的可用性;(2)完善现有的 e-A&F 系统设计建议;(3)确定这些建议对患者安全的影响。

方法

我们招募了 7 名初级保健医生使用 PINGR 执行 7 项任务,在此期间,我们测量了屏幕上的行为和眼动。参与者随后完成了可用性问卷,并进行了深入访谈。数据被整合在一起:更全面地了解可用性问题;增强和解释彼此的发现;并通过三角测量增加结果的有效性。

结果

参与者在使用 PINGR 界面时平均犯了 10 个错误(范围为 8-21),并且平均完成了 7 项任务中的 5 项(范围为 4-7)。错误违反了六个可用性启发式原则:明确的响应选项;感知分组和数据关系;表示格式;明确的描述;用于混淆项的视觉上不同的屏幕;以及工作流程集成。眼动分析显示,组件的集成在很大程度上支持了有效的用户工作流程,尽管临床绩效摘要的模块化设计不必要地增加了认知负担。访谈和问卷显示,PINGR 用户友好,改进的信息优先级可以进一步促进有用的用户行动。

结论

将我们的结果与更广泛的可用性文献进行比较,我们完善了之前发布的一套用于电子审核和反馈的界面设计建议。对于用户参与度、可操作性和信息优先级,对患者安全有重大影响。我们的结果还支持在可用性研究中采用多方法方法,以最大限度地发现问题并提高发现结果的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验