State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
Small. 2015 Oct 21;11(39):5262-71. doi: 10.1002/smll.201500926. Epub 2015 Aug 12.
The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z-scheme CdS-WO(3) photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as-prepared samples are evaluated on the basis of photocatalytic CO(2) reduction to form CH(4) under visible light irradiation. These Z-scheme-heterostructured samples show a higher photocatalytic CO(2) reduction than single-phase photocatalysts. An optimized CdS-WO(3) heterostructure sample exhibits the highest CH(4) production rate of 1.02 μmol h(-1) g(-1) with 5 mol% CdS content, which exceeds the rates observed in single-phase WO(3) and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z-scheme CdS-WO(3) photocatalyst, resulting in an efficient spatial separation of photo-induced electron-hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO(2) molecule adsorption, thereby accelerating photocatalytic CO(2) reduction to CH(4). This study provides novel insights into the design and fabrication of high-performance artificial Z-scheme photocatalysts to perform photocatalytic CO(2) reduction.
人工光合作用系统的发展是一种很有前途的策略,可以将太阳能转化为化学燃料。在这里,通过模拟绿色植物的自然光合作用,制备了一种无需电子媒介体的直接 Z 型 CdS-WO(3)光催化剂。基于可见光照射下光催化 CO(2)还原为 CH(4)的反应,评估了所制备样品的光催化活性。与单相光催化剂相比,这些 Z 型异质结构样品表现出更高的光催化 CO(2)还原活性。优化的 CdS-WO(3)异质结构样品在含有 5 mol% CdS 的情况下,表现出最高的 CH(4)生成速率为 1.02 μmol h(-1) g(-1),在相同反应条件下,分别比单相 WO(3)和 CdS 样品的速率提高了约 100 倍和 10 倍。增强的光催化活性可归因于形成分级直接 Z 型 CdS-WO(3)光催化剂,从而有效地实现光诱导电子-空穴对的空间分离。还原和氧化催化中心保持在两个不同的区域,以最小化光催化产物的不利副反应。CdS 的引入可以增强 CO(2)分子的吸附,从而加速光催化 CO(2)还原为 CH(4)。本研究为设计和制备高性能人工 Z 型光催化剂以进行光催化 CO(2)还原提供了新的思路。