Suppr超能文献

电化学中的机器学习力场:从基础到应用

Machine Learning Force Fields in Electrochemistry: From Fundamentals to Applications.

作者信息

Jinnouchi Ryosuke, Minami Saori

机构信息

Toyota Central R&D Laboratories., Inc., Nagakute 480-1192, Aichi, Japan.

出版信息

ACS Nano. 2025 Jul 1;19(25):22600-22644. doi: 10.1021/acsnano.5c05553. Epub 2025 Jun 18.

Abstract

This article reviews the foundations and applications of machine learning force fields (MLFFs) in electrochemistry, highlighting their role as a transformative tool in materials science. We first provide an overview of MLFFs, then discuss their applications in ionics and electrochemical reactions, and finally outline future directions. Most MLFF approaches use invariant or equivariant descriptors derived from body-order expansions to represent many-body atomic interactions. These descriptors feed into linear regression models, kernel methods, or neural networks to construct potential energy surfaces for gases, liquids, solids, and interfaces involving inorganic and organic materials. MLFFs have enabled a wide range of advances, including all-atom molecular dynamics (MD), data extraction from MD, and accelerated materials discovery. In MD simulations, MLFFs allow accurate evaluation of ionic conductivity via the fluctuation-dissipation theorem and nonequilibrium MD under electric fields, applied to both solid and polymer electrolytes. For electrochemical reactions, MLFFs and Δ-ML models have been used to predict redox potentials in homogeneous and interfacial systems through thermodynamic integration. MLFFs also enable the extraction of key thermodynamic and kinetic information-such as free energy landscapes and local transport coefficients-from atomic trajectories, facilitating coarse-grained modeling of mass transport and reactions in complex electrolytes. In materials discovery, MLFFs have allowed high-throughput screening of 10 to 10 crystal structures, leading to the identification of promising Li-ion and Na-ion solid electrolytes. MLFFs are expected to continue evolving as a core technology in computational materials science, spanning a wide range from high-precision calculations to large-scale materials exploration.

摘要

本文回顾了机器学习力场(MLFFs)在电化学中的基础和应用,强调了它们作为材料科学中变革性工具的作用。我们首先概述了MLFFs,然后讨论它们在离子学和电化学反应中的应用,最后概述未来的发展方向。大多数MLFF方法使用从体序展开导出的不变或等变描述符来表示多体原子相互作用。这些描述符输入到线性回归模型、核方法或神经网络中,以构建涉及无机和有机材料的气体、液体、固体及界面的势能面。MLFFs已经带来了广泛的进展,包括全原子分子动力学(MD)、从MD中提取数据以及加速材料发现。在MD模拟中,MLFFs允许通过涨落耗散定理和电场下的非平衡MD准确评估离子电导率,这可应用于固体和聚合物电解质。对于电化学反应,MLFFs和Δ-ML模型已被用于通过热力学积分预测均相和界面体系中的氧化还原电位。MLFFs还能够从原子轨迹中提取关键的热力学和动力学信息,如自由能景观和局部输运系数,有助于对复杂电解质中的质量传输和反应进行粗粒度建模。在材料发现方面,MLFFs允许对10到10的晶体结构进行高通量筛选,从而识别出有前景的锂离子和钠离子固体电解质。MLFFs有望作为计算材料科学中的一项核心技术持续发展,涵盖从高精度计算到大规模材料探索的广泛领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d10/12224340/487974afed20/nn5c05553_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验