Suppr超能文献

预测晚期过渡金属上的竞争性阴离子电吸附。

Predicting competitive anion electrosorption on late transition metals.

作者信息

Tran Bolton, Goldsmith Bryan R

机构信息

University of Michigan Ann Arbor MI 48109 USA

出版信息

Chem Sci. 2025 Aug 25. doi: 10.1039/d5sc03757c.

Abstract

Investigating competitive anion electrosorption on transition metal surfaces is experimentally challenging but critical for advancing electrocatalytic and electrochemical engineering. Here, we present a rigorous computational framework for predicting anion adsorption as a function of the applied potential by combining grand canonical density functional theory (GC-DFT) with thermodynamic cycles. This approach is validated against experimental voltammograms on Pt(111) and applied to a diverse set of anions on late transition metals. Using multiple linear regression with feature importance analysis, we identify physical descriptors governing electrosorption including anion properties such as formal charge and dipole moment, and metal properties such as d-band center and atomic polarizability. We then develop a potential-dependent Langmuir adsorption model to predict competitive anion coverages under realistic electrochemical conditions. Case studies using the Langmuir model demonstrate the impact of electrolyte composition and pH on anion electrosorption trends relevant to electrocatalytic reactions such as nitrate, oxygen, and carbon dioxide reduction. Overall, this study provides a systematic and predictive framework for understanding anion electrosorption phenomena, offering insights for electrode/catalyst and electrolyte design in electrochemistry and electrocatalysis.

摘要

研究过渡金属表面的竞争性阴离子电吸附在实验上具有挑战性,但对于推进电催化和电化学工程至关重要。在此,我们通过将巨正则密度泛函理论(GC-DFT)与热力学循环相结合,提出了一个严格的计算框架,用于预测阴离子吸附与外加电势的函数关系。该方法通过与Pt(111)上的实验伏安图进行验证,并应用于晚期过渡金属上的多种阴离子。使用具有特征重要性分析的多元线性回归,我们确定了控制电吸附的物理描述符,包括阴离子性质如形式电荷和偶极矩,以及金属性质如d带中心和原子极化率。然后,我们开发了一个电势依赖的朗缪尔吸附模型,以预测实际电化学条件下的竞争性阴离子覆盖度。使用朗缪尔模型的案例研究表明了电解质组成和pH对与电催化反应如硝酸盐、氧和二氧化碳还原相关的阴离子电吸附趋势的影响。总体而言,本研究为理解阴离子电吸附现象提供了一个系统且具有预测性的框架,为电化学和电催化中的电极/催化剂及电解质设计提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c463/12396136/1110f5485a5e/d5sc03757c-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验