Suppr超能文献

为何C统计量对于评估早期预警评分并无参考价值以及应使用何种指标。

Why the C-statistic is not informative to evaluate early warning scores and what metrics to use.

作者信息

Romero-Brufau Santiago, Huddleston Jeanne M, Escobar Gabriel J, Liebow Mark

机构信息

Healthcare Systems Engineering Program, Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, 200 First Street SW, Rochester, MN, 55905, USA.

Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.

出版信息

Crit Care. 2015 Aug 13;19(1):285. doi: 10.1186/s13054-015-0999-1.

Abstract

Metrics typically used to report the performance of an early warning score (EWS), such as the area under the receiver operator characteristic curve or C-statistic, are not useful for pre-implementation analyses. Because physiological deterioration has an extremely low prevalence of 0.02 per patient-day, these metrics can be misleading. We discuss the statistical reasoning behind this statement and present a novel alternative metric more adequate to operationalize an EWS. We suggest that pre-implementation evaluation of EWSs should include at least two metrics: sensitivity; and either the positive predictive value, number needed to evaluate, or estimated rate of alerts. We also argue the importance of reporting each individual cutoff value.

摘要

通常用于报告早期预警评分(EWS)性能的指标,如受试者操作特征曲线下面积或C统计量,对于实施前分析并无用处。由于生理恶化的发生率极低,每位患者每天仅为0.02,这些指标可能会产生误导。我们讨论了这一说法背后的统计推理,并提出了一种更适合用于实施EWS的新替代指标。我们建议,EWS的实施前评估应至少包括两个指标:敏感性;以及阳性预测值、需要评估的数量或估计的警报率中的一项。我们还强调了报告每个单独临界值的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccde/4535737/cce90a9ca4a6/13054_2015_999_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验