Suppr超能文献

野生型和YCA1基因敲除酵母细胞在乙酸诱导的程序性细胞死亡过程中的蛋白质组和代谢组分析

Proteome and metabolome profiling of wild-type and YCA1-knock-out yeast cells during acetic acid-induced programmed cell death.

作者信息

Longo Valentina, Ždralević Maša, Guaragnella Nicoletta, Giannattasio Sergio, Zolla Lello, Timperio Anna Maria

机构信息

Department of Ecology and Biology, "La Tuscia" University, Viterbo, Italy.

Institute of Biomembrane and Bioenergetics, CNR, Bari, Italy.

出版信息

J Proteomics. 2015 Oct 14;128:173-88. doi: 10.1016/j.jprot.2015.08.003. Epub 2015 Aug 9.

Abstract

UNLABELLED

Caspase proteases are responsible for the regulated disassembly of the cell into apoptotic bodies during mammalian apoptosis. Structural homologues of the caspase family (called metacaspases) are involved in programmed cell death in single-cell eukaryotes, yet the molecular mechanisms that contribute to death are currently undefined. Recent evidence revealed that a programmed cell death process is induced by acetic acid (AA-PCD) in Saccharomyces cerevisiae both in the presence and absence of metacaspase encoding gene YCA1. Here, we report an unexpected role for the yeast metacaspase in protein quality and metabolite control. By using an "omics" approach, we focused our attention on proteins and metabolites differentially modulated en route to AA-PCD either in wild type or YCA1-lacking cells. Quantitative proteomic and metabolomic analyses of wild type and Δyca1 cells identified significant alterations in carbohydrate catabolism, lipid metabolism, proteolysis and stress-response, highlighting the main roles of metacaspase in AA-PCD. Finally, deletion of YCA1 led to AA-PCD pathway through the activation of ceramides, whereas in the presence of the gene yeast cells underwent an AA-PCD pathway characterized by the shift of the main glycolytic pathway to the pentose phosphate pathway and a proteolytic mechanism to cope with oxidative stress.

SIGNIFICANCE

The yeast metacaspase regulates both proteolytic activities through the ubiquitin-proteasome system and ceramide metabolism as revealed by proteome and metabolome profiling of YCA1-knock-out cells during acetic-acid induced programmed cell death.

摘要

未标记

在哺乳动物细胞凋亡过程中,半胱天冬酶蛋白酶负责将细胞有序拆解成凋亡小体。半胱天冬酶家族的结构同源物(称为metacaspases)参与单细胞真核生物的程序性细胞死亡,但目前导致细胞死亡的分子机制尚不清楚。最近的证据表明,无论是否存在编码metacaspase的基因YCA1,酿酒酵母中的乙酸(AA-PCD)都会诱导程序性细胞死亡过程。在这里,我们报道了酵母metacaspase在蛋白质质量和代谢物控制中的意外作用。通过使用“组学”方法,我们将注意力集中在野生型或缺乏YCA1的细胞中,在通向AA-PCD的过程中差异调节的蛋白质和代谢物上。对野生型和Δyca1细胞的定量蛋白质组学和代谢组学分析确定了碳水化合物分解代谢、脂质代谢、蛋白水解和应激反应的显著变化,突出了metacaspase在AA-PCD中的主要作用。最后,YCA1的缺失通过神经酰胺的激活导致AA-PCD途径,而在该基因存在的情况下,酵母细胞经历了以主要糖酵解途径向磷酸戊糖途径转变以及一种应对氧化应激的蛋白水解机制为特征的AA-PCD途径。

意义

正如YCA1基因敲除细胞在乙酸诱导的程序性细胞死亡过程中的蛋白质组和代谢组分析所揭示的那样,酵母metacaspase通过泛素-蛋白酶体系统调节蛋白水解活性和神经酰胺代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验