Varadan Vinay, Singh Salendra, Nosrati Arman, Ravi Lakshmeswari, Lutterbaugh James, Barnholtz-Sloan Jill S, Markowitz Sanford D, Willis Joseph E, Guda Kishore
Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106 USA ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA ; Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building, Cleveland, OH 44106 USA.
Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA.
Genome Med. 2015 Jul 20;7(1):69. doi: 10.1186/s13073-015-0192-9. eCollection 2015.
Reliable detection of somatic copy-number alterations (sCNAs) in tumors using whole-exome sequencing (WES) remains challenging owing to technical (inherent noise) and sample-associated variability in WES data. We present a novel computational framework, ENVE, which models inherent noise in any WES dataset, enabling robust detection of sCNAs across WES platforms. ENVE achieved high concordance with orthogonal sCNA assessments across two colorectal cancer (CRC) WES datasets, and consistently outperformed a best-in-class algorithm, Control-FREEC. We subsequently used ENVE to characterize global sCNA landscapes in African American CRCs, identifying genomic aberrations potentially associated with CRC pathogenesis in this population. ENVE is downloadable at https://github.com/ENVE-Tools/ENVE.
由于全外显子组测序(WES)数据存在技术(固有噪声)和样本相关的变异性,利用WES可靠检测肿瘤中的体细胞拷贝数改变(sCNA)仍然具有挑战性。我们提出了一种新的计算框架ENVE,它可以对任何WES数据集中的固有噪声进行建模,从而能够在不同的WES平台上稳健地检测sCNA。在两个结直肠癌(CRC)WES数据集中,ENVE与正交sCNA评估结果高度一致,并且始终优于一流算法Control-FREEC。随后,我们使用ENVE来描绘非裔美国CRC患者的整体sCNA图谱,确定了该人群中可能与CRC发病机制相关的基因组畸变。可从https://github.com/ENVE-Tools/ENVE下载ENVE。