Suppr超能文献

使用全外显子组测序数据对癌症拷贝数变异检测工具的评估

An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.

作者信息

Zare Fatima, Dow Michelle, Monteleone Nicholas, Hosny Abdelrahman, Nabavi Sheida

机构信息

Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.

Biomedical Informatics Department, University of California San Diego, San Diego, CA, USA.

出版信息

BMC Bioinformatics. 2017 May 31;18(1):286. doi: 10.1186/s12859-017-1705-x.

Abstract

BACKGROUND

Recently copy number variation (CNV) has gained considerable interest as a type of genomic/genetic variation that plays an important role in disease susceptibility. Advances in sequencing technology have created an opportunity for detecting CNVs more accurately. Recently whole exome sequencing (WES) has become primary strategy for sequencing patient samples and study their genomics aberrations. However, compared to whole genome sequencing, WES introduces more biases and noise that make CNV detection very challenging. Additionally, tumors' complexity makes the detection of cancer specific CNVs even more difficult. Although many CNV detection tools have been developed since introducing NGS data, there are few tools for somatic CNV detection for WES data in cancer.

RESULTS

In this study, we evaluated the performance of the most recent and commonly used CNV detection tools for WES data in cancer to address their limitations and provide guidelines for developing new ones. We focused on the tools that have been designed or have the ability to detect cancer somatic aberrations. We compared the performance of the tools in terms of sensitivity and false discovery rate (FDR) using real data and simulated data. Comparative analysis of the results of the tools showed that there is a low consensus among the tools in calling CNVs. Using real data, tools show moderate sensitivity (50% - ~80%), fair specificity (70% - 94%) and poor FDRs (27% - ~60%). Also, using simulated data we observed that increasing the coverage more than 10× in exonic regions does not improve the detection power of the tools significantly.

CONCLUSIONS

The limited performance of the current CNV detection tools for WES data in cancer indicates the need for developing more efficient and precise CNV detection methods. Due to the complexity of tumors and high level of noise and biases in WES data, employing advanced novel segmentation, normalization and de-noising techniques that are designed specifically for cancer data is necessary. Also, CNV detection development suffers from the lack of a gold standard for performance evaluation. Finally, developing tools with user-friendly user interfaces and visualization features can enhance CNV studies for a broader range of users.

摘要

背景

最近,拷贝数变异(CNV)作为一种在疾病易感性中起重要作用的基因组/遗传变异,已引起了广泛关注。测序技术的进步为更准确地检测CNV创造了机会。最近,全外显子组测序(WES)已成为对患者样本进行测序并研究其基因组畸变的主要策略。然而,与全基因组测序相比,WES引入了更多的偏差和噪声,这使得CNV检测极具挑战性。此外,肿瘤的复杂性使得检测癌症特异性CNV更加困难。尽管自引入NGS数据以来已经开发了许多CNV检测工具,但用于癌症中WES数据的体细胞CNV检测的工具却很少。

结果

在本研究中,我们评估了用于癌症中WES数据的最新且常用的CNV检测工具的性能,以解决其局限性并为开发新工具提供指导。我们重点关注那些已设计或有能力检测癌症体细胞畸变的工具。我们使用真实数据和模拟数据,从灵敏度和错误发现率(FDR)方面比较了这些工具的性能。对这些工具的结果进行的比较分析表明,在调用CNV方面,工具之间的一致性较低。使用真实数据时,工具显示出中等灵敏度(约50%-约80%)、较好的特异性(约70%-约94%)和较差的FDR(约27%-约60%)。此外,使用模拟数据我们观察到,将外显子区域的覆盖度提高到超过10倍并不能显著提高工具的检测能力。

结论

当前用于癌症中WES数据的CNV检测工具性能有限,这表明需要开发更高效、精确的CNV检测方法。由于肿瘤的复杂性以及WES数据中的高噪声和偏差水平,采用专门为癌症数据设计的先进新颖的分割、归一化和去噪技术是必要的。此外,CNV检测的发展还受到缺乏性能评估金标准的困扰。最后,开发具有用户友好界面和可视化功能的工具可以增强针对更广泛用户的CNV研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c4/5452530/998232af2dce/12859_2017_1705_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验