Wilson Christina L, Natarajan Vaishaali, Hayward Stephen L, Khalimonchuk Oleh, Kidambi Srivatsan
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE 68588, USA.
Nanoscale. 2015 Nov 28;7(44):18477-88. doi: 10.1039/c5nr03646a. Epub 2015 Aug 14.
Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 ± 10.56 ppm, 136.0 ± 31.73 ppm and 62.37 ± 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.
二氧化钛(TiO₂)纳米颗粒是目前世界上产量第二高的工程纳米材料,在消费品中广泛使用,导致人类反复接触。动物研究表明纳米颗粒在大脑中大量积累,而细胞毒性研究证明其对神经元细胞活力和功能有负面影响。然而,纳米颗粒对大脑中最丰富的细胞——星形胶质细胞的毒理学影响尚未得到广泛研究。因此,我们确定了三种不同的TiO₂纳米颗粒(金红石型、锐钛矿型和市售的P25 TiO₂纳米颗粒)对原代大鼠皮质星形胶质细胞的亚毒性作用。我们评估了一些与星形胶质细胞功能和线粒体失调相关的事件:(1)谷氨酸摄取;(2)通过测量活性氧产生来评估氧化还原信号机制;(3)发动蛋白相关蛋白(DRP)以及线粒体融合蛋白1和2的表达模式,其表达对线粒体动力学至关重要;(4)通过MitoTracker® Red CMXRos染色观察线粒体形态。结果发现,锐钛矿型、金红石型和P25的半数致死浓度(LC50)值分别为88.22±10.56 ppm、136.0±31.73 ppm和62.37±9.06 ppm,表明纳米颗粒具有特定毒性。所有三种TiO₂纳米颗粒均导致谷氨酸摄取显著减少,这表明重要的星形胶质细胞功能丧失。TiO₂纳米颗粒还诱导活性氧生成增加以及线粒体膜电位降低,提示线粒体损伤。TiO₂纳米颗粒暴露在低浓度(25 ppm)时改变了DRP的表达模式,在高浓度(100 ppm)时诱导凋亡性裂变。TiO₂纳米颗粒暴露还导致线粒体形态发生变化,这通过线粒体染色得到证实。总体而言,我们的数据提供了令人信服的证据,表明TiO₂纳米颗粒暴露可能对星形胶质细胞介导的神经功能障碍产生潜在影响。