Li Xiaobao, Chopp David L, Russin William A, Brannon Paul T, Parsek Matthew R, Packman Aaron I
Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA.
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, USA.
Appl Environ Microbiol. 2015 Nov;81(21):7403-10. doi: 10.1128/AEM.01585-15. Epub 2015 Aug 14.
Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties.
微生物催化的碳酸盐矿物沉淀是多种生物、地质和工程系统中的一个重要过程。然而,调节碳酸盐生物矿化的过程及其对生物膜的影响在很大程度上尚未得到探索,主要是因为目前的方法无法直接观察生物膜内的生物矿化。在此,我们提出了一种对生物膜内生物矿化进行原位实时成像的方法,并利用该方法表明铜绿假单胞菌生物膜会产生形态上不同的碳酸盐沉积物,这些沉积物会显著改变生物膜结构。原位产生的碳酸盐生物矿化模式与非生物沉淀产生的颗粒积累所导致的模式有很大不同。与矿物沉淀应发生在生物膜表面的普遍预期相反,我们发现生物矿化始于生物膜底部。碳酸盐沉积物随时间增长,使生物膜内的细胞脱离并使生物膜形态变形。这些发现表明生物矿化是生物膜结构和特性的一般调节因子。