Suppr超能文献

细胞外基质通过限制妥布霉素的渗透来保护铜绿假单胞菌生物膜。

The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.

机构信息

Department of Microbiology, University of Washington, Seattle, WA, USA.

出版信息

Environ Microbiol. 2013 Oct;15(10):2865-78. doi: 10.1111/1462-2920.12155. Epub 2013 Jun 10.

Abstract

Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.

摘要

生物膜中的细胞对抗生素的敏感性低于浮游细胞。虽然这种现象是多因素的,但基质降低抗生素渗透到生物膜中的能力被认为是有限的,有研究表明抗生素可以相当迅速地穿过生物膜。在这项研究中,我们监测了两种临床相关抗生素妥布霉素和环丙沙星进入非粘液性铜绿假单胞菌生物膜的运输情况。令我们惊讶的是,我们发现带正电荷的抗生素妥布霉素被隔离在生物膜的外围,而中性抗生素环丙沙星则很容易渗透。我们提供的证据表明,生物膜外围的妥布霉素既刺激了局部应激反应,又杀死了这些区域的细菌,但没有杀死下面的生物膜中的细菌。虽然尚不清楚哪种基质成分与妥布霉素结合,但它的渗透可以通过添加阳离子以剂量依赖的方式增加,从而导致生物膜死亡增加。这些数据表明,妥布霉素与生物膜基质的离子相互作用限制了其渗透。我们提出,妥布霉素在生物膜外围的隔离是保护位于隔离区下方的代谢活跃细胞的重要机制。

相似文献

1
The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.
Environ Microbiol. 2013 Oct;15(10):2865-78. doi: 10.1111/1462-2920.12155. Epub 2013 Jun 10.
3
Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin.
Antimicrob Agents Chemother. 2007 May;51(5):1813-7. doi: 10.1128/AAC.01037-06. Epub 2007 Mar 12.
5
Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA.
J Bacteriol. 2022 May 17;204(5):e0056821. doi: 10.1128/jb.00568-21. Epub 2022 Apr 13.
6
8
Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2015 Jul;59(7):3838-47. doi: 10.1128/AAC.00433-15. Epub 2015 Apr 13.
9
Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms.
J Antimicrob Chemother. 2017 Dec 1;72(12):3357-3365. doi: 10.1093/jac/dkx288.

引用本文的文献

2
Biofilms and oral health: nanotechnology for biofilm control.
Discov Nano. 2025 Jul 16;20(1):114. doi: 10.1186/s11671-025-04299-3.
3
The pharmacokinetics of hexylresorcinol-containing lozenges and their antimicrobial efficacy against oral and respiratory microorganisms.
J Oral Microbiol. 2025 Jul 7;17(1):2525229. doi: 10.1080/20002297.2025.2525229. eCollection 2025.
4
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by biofilms.
J Bacteriol. 2025 May 22;207(5):e0050324. doi: 10.1128/jb.00503-24. Epub 2025 Apr 30.
5
Nanomaterials: A Prospective Strategy for Biofilm-Forming Treatment.
Int J Nanomedicine. 2025 Apr 23;20:5209-5229. doi: 10.2147/IJN.S512066. eCollection 2025.
7
Decoding interactions between biofilms and DNA nanoparticles.
Biofilm. 2025 Feb 6;9:100260. doi: 10.1016/j.bioflm.2025.100260. eCollection 2025 Jun.
8
Non-disruptive matrix turnover is a conserved feature of biofilm aggregate growth in paradigm pathogenic species.
mBio. 2025 Mar 12;16(3):e0393524. doi: 10.1128/mbio.03935-24. Epub 2025 Feb 21.
9
Acetylation of alginate enables the production of inks that mimic the chemical properties of biofilm.
J Mater Chem B. 2025 Feb 19;13(8):2796-2809. doi: 10.1039/d4tb02675f.
10
Anti-Biofilm Agents to Overcome Antibiotic Resistance.
Pharmaceuticals (Basel). 2025 Jan 13;18(1):92. doi: 10.3390/ph18010092.

本文引用的文献

1
Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2013 May;57(5):2352-61. doi: 10.1128/AAC.00001-13. Epub 2013 Mar 11.
2
The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance.
J Bacteriol. 2012 Sep;194(18):4823-36. doi: 10.1128/JB.00765-12. Epub 2012 Jun 22.
5
The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix.
Environ Microbiol. 2012 Aug;14(8):1913-28. doi: 10.1111/j.1462-2920.2011.02657.x. Epub 2011 Dec 19.
6
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria.
Science. 2011 Nov 18;334(6058):982-6. doi: 10.1126/science.1211037.
7
Metabolite-enabled eradication of bacterial persisters by aminoglycosides.
Nature. 2011 May 12;473(7346):216-20. doi: 10.1038/nature10069.
8
Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2011 May;55(5):1874-82. doi: 10.1128/AAC.00935-10. Epub 2011 Feb 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验