Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
Department of Bioengineering and Therapeutic Sciences, University of California San Francisco School of Pharmacy, San Francisco, CA 94143, USA.
J Antimicrob Chemother. 2017 Dec 1;72(12):3357-3365. doi: 10.1093/jac/dkx288.
The selection and dose of antibiotic therapy for biofilm-related infections are based on traditional pharmacokinetic studies using planktonic bacteria. The objective of this study was to characterize the time course and spatial activity of human exposure levels of meropenem and tobramycin against Pseudomonas aeruginosa biofilms grown in an in vitro flow-chamber model.
Pharmacokinetic profiles of meropenem and tobramycin used in human therapy were administered to GFP-labelled P. aeruginosa PAO1 grown in flow chambers for 24 or 72 h. Images were acquired using confocal laser scanning microscopy throughout antibiotic treatment. Bacterial biomass was measured using COMSTAT and pharmacokinetic/pharmacodynamic models were fitted using NONMEM7.
Meropenem treatment resulted in more rapid and sustained killing of both the 24 and 72 h PAO1 biofilm compared with tobramycin. Biofilm regrowth after antibiotic treatment occurred fastest with tobramycin. Meropenem preferentially killed subpopulations within the mushroom cap of the biofilms, regardless of biofilm maturity. The spatial killing by tobramycin varied with biofilm maturity. A tobramycin-treated 24 h biofilm resulted in live and dead cells detaching from the biofilm, while treatment of a 72 h biofilm preferentially killed subpopulations on the periphery of the mushroom stalk. Regrowth occurred primarily on the mushroom caps. Combination meropenem and tobramycin therapy resulted in rapid and efficient killing of biofilm cells, with a spatial pattern similar to meropenem alone.
Simulated human concentrations of meropenem and tobramycin in young and mature PAO1 biofilms exhibited differences in temporal and spatial patterns of killing and antibiotic tolerance development.
生物膜相关感染的抗生素治疗选择和剂量是基于使用浮游细菌的传统药代动力学研究。本研究的目的是描述美罗培南和妥布霉素在体外流动室模型中针对铜绿假单胞菌生物膜的人体暴露水平的时间过程和空间活性。
将人类治疗中使用的美罗培南和妥布霉素的药代动力学曲线用于 GFP 标记的 PAO1 铜绿假单胞菌在流动室内生长 24 或 72 小时。在整个抗生素治疗过程中使用共焦激光扫描显微镜获取图像。使用 COMSTAT 测量细菌生物量,并使用 NONMEM7 拟合药代动力学/药效动力学模型。
与妥布霉素相比,美罗培南治疗可更快速和持续地杀灭 24 和 72 小时的 PAO1 生物膜。抗生素治疗后生物膜的快速再生长发生得最快的是妥布霉素。美罗培南优先杀死生物膜蘑菇帽内的亚群,而不管生物膜成熟度如何。妥布霉素的空间杀伤随生物膜成熟度而变化。用妥布霉素处理的 24 小时生物膜导致活细胞和死细胞从生物膜上脱落,而处理 72 小时的生物膜则优先杀死蘑菇柄周围的亚群。再生长主要发生在蘑菇帽上。美罗培南和妥布霉素联合治疗可迅速有效地杀灭生物膜细胞,其空间模式与单独使用美罗培南相似。
在年轻和成熟的 PAO1 生物膜中模拟人体浓度的美罗培南和妥布霉素在杀灭和抗生素耐药性发展方面表现出时间和空间模式的差异。