Suppr超能文献

美罗培南和妥布霉素处理的铜绿假单胞菌生物膜的时空药效动力学。

Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms.

机构信息

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco School of Pharmacy, San Francisco, CA 94143, USA.

出版信息

J Antimicrob Chemother. 2017 Dec 1;72(12):3357-3365. doi: 10.1093/jac/dkx288.

Abstract

OBJECTIVES

The selection and dose of antibiotic therapy for biofilm-related infections are based on traditional pharmacokinetic studies using planktonic bacteria. The objective of this study was to characterize the time course and spatial activity of human exposure levels of meropenem and tobramycin against Pseudomonas aeruginosa biofilms grown in an in vitro flow-chamber model.

METHODS

Pharmacokinetic profiles of meropenem and tobramycin used in human therapy were administered to GFP-labelled P. aeruginosa PAO1 grown in flow chambers for 24 or 72 h. Images were acquired using confocal laser scanning microscopy throughout antibiotic treatment. Bacterial biomass was measured using COMSTAT and pharmacokinetic/pharmacodynamic models were fitted using NONMEM7.

RESULTS

Meropenem treatment resulted in more rapid and sustained killing of both the 24 and 72 h PAO1 biofilm compared with tobramycin. Biofilm regrowth after antibiotic treatment occurred fastest with tobramycin. Meropenem preferentially killed subpopulations within the mushroom cap of the biofilms, regardless of biofilm maturity. The spatial killing by tobramycin varied with biofilm maturity. A tobramycin-treated 24 h biofilm resulted in live and dead cells detaching from the biofilm, while treatment of a 72 h biofilm preferentially killed subpopulations on the periphery of the mushroom stalk. Regrowth occurred primarily on the mushroom caps. Combination meropenem and tobramycin therapy resulted in rapid and efficient killing of biofilm cells, with a spatial pattern similar to meropenem alone.

CONCLUSIONS

Simulated human concentrations of meropenem and tobramycin in young and mature PAO1 biofilms exhibited differences in temporal and spatial patterns of killing and antibiotic tolerance development.

摘要

目的

生物膜相关感染的抗生素治疗选择和剂量是基于使用浮游细菌的传统药代动力学研究。本研究的目的是描述美罗培南和妥布霉素在体外流动室模型中针对铜绿假单胞菌生物膜的人体暴露水平的时间过程和空间活性。

方法

将人类治疗中使用的美罗培南和妥布霉素的药代动力学曲线用于 GFP 标记的 PAO1 铜绿假单胞菌在流动室内生长 24 或 72 小时。在整个抗生素治疗过程中使用共焦激光扫描显微镜获取图像。使用 COMSTAT 测量细菌生物量,并使用 NONMEM7 拟合药代动力学/药效动力学模型。

结果

与妥布霉素相比,美罗培南治疗可更快速和持续地杀灭 24 和 72 小时的 PAO1 生物膜。抗生素治疗后生物膜的快速再生长发生得最快的是妥布霉素。美罗培南优先杀死生物膜蘑菇帽内的亚群,而不管生物膜成熟度如何。妥布霉素的空间杀伤随生物膜成熟度而变化。用妥布霉素处理的 24 小时生物膜导致活细胞和死细胞从生物膜上脱落,而处理 72 小时的生物膜则优先杀死蘑菇柄周围的亚群。再生长主要发生在蘑菇帽上。美罗培南和妥布霉素联合治疗可迅速有效地杀灭生物膜细胞,其空间模式与单独使用美罗培南相似。

结论

在年轻和成熟的 PAO1 生物膜中模拟人体浓度的美罗培南和妥布霉素在杀灭和抗生素耐药性发展方面表现出时间和空间模式的差异。

相似文献

1
Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms.
J Antimicrob Chemother. 2017 Dec 1;72(12):3357-3365. doi: 10.1093/jac/dkx288.
3
Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model.
J Antimicrob Chemother. 2015 Jul;70(7):2057-63. doi: 10.1093/jac/dkv058. Epub 2015 Mar 18.
4
Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.
AAPS PharmSciTech. 2014 Dec;15(6):1644-54. doi: 10.1208/s12249-014-0200-1. Epub 2014 Aug 26.
5
New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms.
Antimicrob Agents Chemother. 2015 Jul;59(7):4074-81. doi: 10.1128/AAC.05037-14. Epub 2015 Apr 27.
6
Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth.
Int J Antimicrob Agents. 2019 May;53(5):564-573. doi: 10.1016/j.ijantimicag.2018.12.015. Epub 2019 Jan 5.
9
Breaking the Vicious Cycle of Antibiotic Killing and Regrowth of Biofilm-Residing .
Antimicrob Agents Chemother. 2018 Nov 26;62(12). doi: 10.1128/AAC.01635-18. Print 2018 Dec.

引用本文的文献

1
2
Increased tolerance to commonly used antibiotics in a porcine keratitis model.
Microbiology (Reading). 2024 May;170(5). doi: 10.1099/mic.0.001459.
3
The use of combination therapy for the improvement of colistin activity against bacterial biofilm.
Braz J Microbiol. 2024 Mar;55(1):411-427. doi: 10.1007/s42770-023-01189-7. Epub 2023 Nov 30.
4
Pharmacodynamic Model of the Dynamic Response of Biofilms to Antibacterial Treatments.
Biomedicines. 2023 Aug 21;11(8):2316. doi: 10.3390/biomedicines11082316.
6
Mechanisms of antibiotic resistance in biofilms.
Biofilm. 2023 May 2;5:100129. doi: 10.1016/j.bioflm.2023.100129. eCollection 2023 Dec.
7
Tolerance and resistance of microbial biofilms.
Nat Rev Microbiol. 2022 Oct;20(10):621-635. doi: 10.1038/s41579-022-00682-4. Epub 2022 Feb 3.
8
Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms.
ISME J. 2022 Apr;16(4):1176-1186. doi: 10.1038/s41396-021-01157-9. Epub 2021 Dec 8.

本文引用的文献

1
Distinguishing between resistance, tolerance and persistence to antibiotic treatment.
Nat Rev Microbiol. 2016 Apr;14(5):320-30. doi: 10.1038/nrmicro.2016.34.
3
New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms.
Antimicrob Agents Chemother. 2015 Jul;59(7):4074-81. doi: 10.1128/AAC.05037-14. Epub 2015 Apr 27.
5
ESCMID guideline for the diagnosis and treatment of biofilm infections 2014.
Clin Microbiol Infect. 2015 May;21 Suppl 1:S1-25. doi: 10.1016/j.cmi.2014.10.024. Epub 2015 Jan 14.
6
Determination of meropenem in bacterial media by LC-MS/MS.
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Jun 15;961:71-6. doi: 10.1016/j.jchromb.2014.05.002. Epub 2014 May 14.
7
The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.
Environ Microbiol. 2013 Oct;15(10):2865-78. doi: 10.1111/1462-2920.12155. Epub 2013 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验