Gutiérrez-Tobal Gonzalo C, Álvarez Daniel, Del Campo Félix, Hornero Roberto
IEEE Trans Biomed Eng. 2016 Mar;63(3):636-46. doi: 10.1109/TBME.2015.2467188. Epub 2015 Aug 11.
The purpose of this study is to evaluate the usefulness of the boosting algorithm AdaBoost (AB) in the context of the sleep apnea-hypopnea syndrome (SAHS) diagnosis.
We characterize SAHS in single-channel airflow (AF) signals from 317 subjects by the extraction of spectral and nonlinear features. Relevancy and redundancy analyses are conducted through the fast correlation-based filter to derive the optimum set of features among them. These are used to feed classifiers based on linear discriminant analysis (LDA) and classification and regression trees (CART). LDA and CART models are sequentially obtained through AB, which combines their performances to reach higher diagnostic ability than each of them separately.
Our AB-LDA and AB-CART approaches showed high diagnostic performance when determining SAHS and its severity. The assessment of different apnea-hypopnea index cutoffs using an independent test set derived into high accuracy: 86.5% (5 events/h), 86.5% (10 events/h), 81.0% (15 events/h), and 83.3% (30 events/h). These results widely outperformed those from logistic regression and a conventional event-detection algorithm applied to the same database.
Our results suggest that AB applied to data from single-channel AF can be useful to determine SAHS and its severity.
SAHS detection might be simplified through the only use of single-channel AF data.
本研究旨在评估增强算法AdaBoost(AB)在睡眠呼吸暂停低通气综合征(SAHS)诊断中的实用性。
我们通过提取频谱和非线性特征,对317名受试者单通道气流(AF)信号中的SAHS进行特征描述。通过基于快速相关性的滤波器进行相关性和冗余性分析,以从中得出最佳特征集。这些特征用于为基于线性判别分析(LDA)和分类回归树(CART)的分类器提供输入。LDA和CART模型通过AB依次获得,AB将它们的性能结合起来,以达到比单独使用它们更高的诊断能力。
我们的AB-LDA和AB-CART方法在确定SAHS及其严重程度时显示出较高的诊断性能。使用独立测试集对不同的呼吸暂停低通气指数临界值进行评估,得到了较高的准确率:86.5%(5次/小时)、86.5%(10次/小时)、81.0%(15次/小时)和83.3%(30次/小时)。这些结果大大优于应用于同一数据库的逻辑回归和传统事件检测算法的结果。
我们的结果表明,将AB应用于单通道AF数据可用于确定SAHS及其严重程度。
仅使用单通道AF数据可能会简化SAHS的检测。