College of Electronic Engineering, Heilongjiang University, Harbin 150080, China.
Department of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.
J Healthc Eng. 2023 Jan 23;2023:5287043. doi: 10.1155/2023/5287043. eCollection 2023.
Sleep apnea syndrome (SAS) is the most common sleep disorder which affects human life and health. Many researchers use deep learning methods to automatically learn the features of physiological signals. However, these methods ignore the different effects of multichannel features from various physiological signals. To solve this problem, we propose a multichannel fusion network (MCFN), which learns the multilevel features through a convolution neural network on different respiratory signals and then reconstructs the relationship between feature channels with an attention mechanism. MCFN effectively fuses the multichannel features to improve the SAS detection performance. We conducted experiments on the Multi-Ethnic Study of Atherosclerosis (MESA) dataset, consisting of 2056 subjects. The experiment results show that our proposed network achieves an overall accuracy of 87.3%, which is better than other SAS detection methods and can better assist sleep experts in diagnosing sleep disorders.
睡眠呼吸暂停综合征(SAS)是最常见的睡眠障碍,影响着人类的生活和健康。许多研究人员使用深度学习方法来自动学习生理信号的特征。然而,这些方法忽略了来自不同生理信号的多通道特征的不同影响。为了解决这个问题,我们提出了一种多通道融合网络(MCFN),该网络通过在不同呼吸信号上的卷积神经网络来学习多层次特征,然后使用注意力机制来重建特征通道之间的关系。MCFN 有效地融合了多通道特征,提高了 SAS 检测性能。我们在包含 2056 名受试者的多民族动脉粥样硬化研究(MESA)数据集上进行了实验。实验结果表明,我们提出的网络的总体准确率为 87.3%,优于其他 SAS 检测方法,可更好地帮助睡眠专家诊断睡眠障碍。