Suppr超能文献

小波分析夜间气流以检测儿童阻塞性睡眠呼吸暂停。

Wavelet Analysis of Overnight Airflow to Detect Obstructive Sleep Apnea in Children.

机构信息

Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain.

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain.

出版信息

Sensors (Basel). 2021 Feb 21;21(4):1491. doi: 10.3390/s21041491.

Abstract

This study focused on the automatic analysis of the airflow signal (AF) to aid in the diagnosis of pediatric obstructive sleep apnea (OSA). Thus, our aims were: () to characterize the overnight AF characteristics using discrete wavelet transform (DWT) approach, () to evaluate its diagnostic utility, and () to assess its complementarity with the 3% oxygen desaturation index (3). In order to reach these goals, we analyzed 946 overnight pediatric AF recordings in three stages: () DWT-derived feature extraction, () feature selection, and () pattern recognition. AF recordings from OSA patients showed both lower detail coefficients and decreased activity associated with the normal breathing band. Wavelet analysis also revealed that OSA disturbed the frequency and energy distribution of the AF signal, increasing its irregularity. Moreover, the information obtained from the wavelet analysis was complementary to 3. In this regard, the combination of both wavelet information and 3 achieved high diagnostic accuracy using the common OSA-positive cutoffs: 77.97%, 81.91%, and 90.99% (AdaBoost.M2), and 81.96%, 82.14%, and 90.69% (Bayesian multi-layer perceptron) for 1, 5, and 10 apneic events/hour, respectively. Hence, these findings suggest that DWT properly characterizes OSA-related severity as embedded in nocturnal AF, and could simplify the diagnosis of pediatric OSA.

摘要

本研究专注于气流信号(AF)的自动分析,以辅助小儿阻塞性睡眠呼吸暂停(OSA)的诊断。因此,我们的目的是:()使用离散小波变换(DWT)方法来描述整夜 AF 特征,()评估其诊断效用,()评估其与 3%氧减饱和指数(3)的互补性。为了达到这些目标,我们分三个阶段分析了 946 例小儿夜间 AF 记录:()DWT 衍生特征提取,()特征选择,和()模式识别。OSA 患者的 AF 记录显示,细节系数均较低,与正常呼吸带相关的活动减少。小波分析还表明,OSA 扰乱了 AF 信号的频率和能量分布,增加了其不规则性。此外,小波分析所获得的信息与 3 互补。在这方面,使用常见的 OSA 阳性截断值(1、5 和 10 次呼吸暂停/小时分别为 77.97%、81.91%和 90.99%(AdaBoost.M2)和 81.96%、82.14%和 90.69%(贝叶斯多层感知器),结合小波信息和 3 都能实现高诊断准确性。因此,这些发现表明 DWT 可以正确描述嵌入在夜间 AF 中的 OSA 相关严重程度,并可能简化小儿 OSA 的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验