Castillo-Hair Sebastian M, Villota Elizabeth R, Coronado Alberto M
Faculty of Mechanical Engineering, Universidad Nacional de Ingeniería, Av. Túpac Amaru s/n - Puerta 3, Pabellón A, 25 Lima, Peru.
Syst Synth Biol. 2015 Sep;9(3):125-33. doi: 10.1007/s11693-015-9178-6. Epub 2015 Aug 5.
Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.
振荡响应在生物体的调节网络中普遍存在,这一事实促使人们广泛努力研究和复制其中涉及的回路。然而,迄今为止,自然振荡器稳健性的潜在设计原则尚未完全明确。在这里,我们研究了一个三组分酶网络模型,以确定稳健振荡的拓扑要求。首先,通过模拟每一种可能的拓扑排列并改变其参数值,我们证明了在保持正负相互作用适当平衡的同时,增加负反馈回路和正自调节的数量可以获得稳健的振荡器。然后,我们识别出网络基序,它们在更复杂的拓扑结构中的存在是获得振荡响应的必要条件。最后,我们确定了一系列逐步产生更稳健振荡器的简单架构模式。这些发现共同有助于设计更可靠的合成生物分子网络,也可能对理解其他振荡系统有启示意义。