Suppr超能文献

稳健振荡行为的设计原则。

Design principles for robust oscillatory behavior.

作者信息

Castillo-Hair Sebastian M, Villota Elizabeth R, Coronado Alberto M

机构信息

Faculty of Mechanical Engineering, Universidad Nacional de Ingeniería, Av. Túpac Amaru s/n - Puerta 3, Pabellón A, 25 Lima, Peru.

出版信息

Syst Synth Biol. 2015 Sep;9(3):125-33. doi: 10.1007/s11693-015-9178-6. Epub 2015 Aug 5.

Abstract

Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

摘要

振荡响应在生物体的调节网络中普遍存在,这一事实促使人们广泛努力研究和复制其中涉及的回路。然而,迄今为止,自然振荡器稳健性的潜在设计原则尚未完全明确。在这里,我们研究了一个三组分酶网络模型,以确定稳健振荡的拓扑要求。首先,通过模拟每一种可能的拓扑排列并改变其参数值,我们证明了在保持正负相互作用适当平衡的同时,增加负反馈回路和正自调节的数量可以获得稳健的振荡器。然后,我们识别出网络基序,它们在更复杂的拓扑结构中的存在是获得振荡响应的必要条件。最后,我们确定了一系列逐步产生更稳健振荡器的简单架构模式。这些发现共同有助于设计更可靠的合成生物分子网络,也可能对理解其他振荡系统有启示意义。

相似文献

1
Design principles for robust oscillatory behavior.
Syst Synth Biol. 2015 Sep;9(3):125-33. doi: 10.1007/s11693-015-9178-6. Epub 2015 Aug 5.
3
Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.
Syst Synth Biol. 2015 Sep;9(3):77-84. doi: 10.1007/s11693-015-9173-y. Epub 2015 Jun 5.
4
Robust network topologies for generating oscillations with temperature-independent periods.
PLoS One. 2017 Feb 2;12(2):e0171263. doi: 10.1371/journal.pone.0171263. eCollection 2017.
5
Incoherent Inputs Enhance the Robustness of Biological Oscillators.
Cell Syst. 2017 Jul 26;5(1):72-81.e4. doi: 10.1016/j.cels.2017.06.013.
6
Modeling the tunability of the dual-feedback genetic oscillator.
Phys Rev E. 2020 Jan;101(1-1):012417. doi: 10.1103/PhysRevE.101.012417.
7
Robustness of coupled oscillator networks with heterogeneous natural frequencies.
Chaos. 2017 Dec;27(12):123105. doi: 10.1063/1.4991742.
8
Design of Oscillatory Networks through Post-Translational Control of Network Components.
Synth Biol Eng. 2023 Jun;1(1). doi: 10.35534/sbe.2023.10004. Epub 2023 Mar 13.
9
Slow activator degradation reduces the robustness of a coupled feedback loop oscillator.
Mol Biosyst. 2010 Aug;6(8):1469-74. doi: 10.1039/c003480k. Epub 2010 May 27.
10
Robust network topologies for generating switch-like cellular responses.
PLoS Comput Biol. 2011 Jun;7(6):e1002085. doi: 10.1371/journal.pcbi.1002085. Epub 2011 Jun 23.

引用本文的文献

1
The Topological Characteristics of Biological Ratio-Sensing Networks.
Life (Basel). 2023 Jan 28;13(2):351. doi: 10.3390/life13020351.
2
How Retroactivity Affects the Behavior of Incoherent Feedforward Loops.
iScience. 2020 Nov 7;23(12):101779. doi: 10.1016/j.isci.2020.101779. eCollection 2020 Dec 18.
3
Constructing network topologies for multiple signal-encoding functions.
BMC Syst Biol. 2019 Jan 11;13(1):6. doi: 10.1186/s12918-018-0676-5.
4
Systems and synthetic biology approaches in understanding biological oscillators.
Quant Biol. 2018 Mar;6(1):1-14. doi: 10.1007/s40484-017-0120-7. Epub 2017 Nov 2.
5
Incoherent Inputs Enhance the Robustness of Biological Oscillators.
Cell Syst. 2017 Jul 26;5(1):72-81.e4. doi: 10.1016/j.cels.2017.06.013.
6
Robust network topologies for generating oscillations with temperature-independent periods.
PLoS One. 2017 Feb 2;12(2):e0171263. doi: 10.1371/journal.pone.0171263. eCollection 2017.
7
A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators.
ACS Synth Biol. 2016 Jun 17;5(6):459-70. doi: 10.1021/acssynbio.5b00179. Epub 2016 Feb 17.

本文引用的文献

1
Evolving robust gene regulatory networks.
PLoS One. 2015 Jan 23;10(1):e0116258. doi: 10.1371/journal.pone.0116258. eCollection 2015.
2
Rational design of functional and tunable oscillating enzymatic networks.
Nat Chem. 2015 Feb;7(2):160-5. doi: 10.1038/nchem.2142. Epub 2015 Jan 12.
3
Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks.
Mol Syst Biol. 2014 Nov 24;10(11):763. doi: 10.15252/msb.20145735.
4
Positive feedback promotes oscillations in negative feedback loops.
PLoS One. 2014 Aug 15;9(8):e104761. doi: 10.1371/journal.pone.0104761. eCollection 2014.
5
Strategy revealing phenotypic differences among synthetic oscillator designs.
ACS Synth Biol. 2014 Sep 19;3(9):686-701. doi: 10.1021/sb500236e. Epub 2014 Jul 24.
6
Genomic mining of prokaryotic repressors for orthogonal logic gates.
Nat Chem Biol. 2014 Feb;10(2):99-105. doi: 10.1038/nchembio.1411. Epub 2013 Dec 8.
9
Hive plots--rational approach to visualizing networks.
Brief Bioinform. 2012 Sep;13(5):627-44. doi: 10.1093/bib/bbr069. Epub 2011 Dec 9.
10
Motifs emerge from function in model gene regulatory networks.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17263-8. doi: 10.1073/pnas.1109435108. Epub 2011 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验