Suppr超能文献

一种统计方法揭示了最稳健随机基因振荡器的设计。

A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators.

作者信息

Woods Mae L, Leon Miriam, Perez-Carrasco Ruben, Barnes Chris P

机构信息

Department of Cell and Developmental Biology, ‡Department of Mathematics, and ¶Department of Genetics, Evolution and Environment, University College London , London, WC1E 6BT, U.K.

出版信息

ACS Synth Biol. 2016 Jun 17;5(6):459-70. doi: 10.1021/acssynbio.5b00179. Epub 2016 Feb 17.

Abstract

The engineering of transcriptional networks presents many challenges due to the inherent uncertainty in the system structure, changing cellular context, and stochasticity in the governing dynamics. One approach to address these problems is to design and build systems that can function across a range of conditions; that is they are robust to uncertainty in their constituent components. Here we examine the parametric robustness landscape of transcriptional oscillators, which underlie many important processes such as circadian rhythms and the cell cycle, plus also serve as a model for the engineering of complex and emergent phenomena. The central questions that we address are: Can we build genetic oscillators that are more robust than those already constructed? Can we make genetic oscillators arbitrarily robust? These questions are technically challenging due to the large model and parameter spaces that must be efficiently explored. Here we use a measure of robustness that coincides with the Bayesian model evidence, combined with an efficient Monte Carlo method to traverse model space and concentrate on regions of high robustness, which enables the accurate evaluation of the relative robustness of gene network models governed by stochastic dynamics. We report the most robust two and three gene oscillator systems, plus examine how the number of interactions, the presence of autoregulation, and degradation of mRNA and protein affects the frequency, amplitude, and robustness of transcriptional oscillators. We also find that there is a limit to parametric robustness, beyond which there is nothing to be gained by adding additional feedback. Importantly, we provide predictions on new oscillator systems that can be constructed to verify the theory and advance design and modeling approaches to systems and synthetic biology.

摘要

转录网络工程面临诸多挑战,这是由于系统结构存在内在不确定性、细胞环境不断变化以及调控动力学具有随机性。解决这些问题的一种方法是设计和构建能够在一系列条件下发挥作用的系统;也就是说,它们对其组成成分中的不确定性具有鲁棒性。在这里,我们研究转录振荡器的参数鲁棒性态势,转录振荡器是许多重要过程(如昼夜节律和细胞周期)的基础,同时也作为复杂和涌现现象工程的一个模型。我们要解决的核心问题是:我们能否构建比已构建的基因振荡器更鲁棒的基因振荡器?我们能否使基因振荡器具有任意鲁棒性?由于必须有效探索巨大的模型和参数空间,这些问题在技术上具有挑战性。在这里,我们使用一种与贝叶斯模型证据一致的鲁棒性度量,结合一种高效的蒙特卡罗方法来遍历模型空间并专注于高鲁棒性区域,这使得能够准确评估由随机动力学控制的基因网络模型的相对鲁棒性。我们报告了最鲁棒的双基因和三基因振荡器系统,并研究了相互作用的数量、自调控的存在以及mRNA和蛋白质的降解如何影响转录振荡器的频率、振幅和鲁棒性。我们还发现参数鲁棒性存在一个极限,超过这个极限,增加额外的反馈就无法获得更多收益。重要的是,我们对可构建的新振荡器系统提供了预测,以验证该理论并推动系统和合成生物学的设计和建模方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0df/4914944/fef3ce4c7f81/sb-2015-00179e_0006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验