London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
Department of Materials, Imperial College London, London SW7 2AZ, UK.
Nat Nanotechnol. 2015 Oct;10(10):899-907. doi: 10.1038/nnano.2015.174. Epub 2015 Aug 17.
Cantilever arrays have been used to monitor biochemical interactions and their associated stress. However, it is often necessary to passivate the underside of the cantilever to prevent unwanted ligand adsorption, and this process requires tedious optimization. Here, we show a way to immobilize membrane receptors on nanomechanical cantilevers so that they can function without passivating the underlying surface. Using equilibrium theory, we quantitatively describe the mechanical responses of vancomycin, human immunodeficiency virus type 1 antigens and coagulation factor VIII captured on the cantilever in the presence of competing stresses from the top and bottom cantilever surfaces. We show that the area per receptor molecule on the cantilever surface influences ligand-receptor binding and plays an important role on stress. Our results offer a new way to sense biomolecules and will aid in the creation of ultrasensitive biosensors.
悬臂梁阵列已被用于监测生化相互作用及其相关的应力。然而,通常需要钝化悬臂梁的下侧以防止不需要的配体吸附,而这个过程需要繁琐的优化。在这里,我们展示了一种将膜受体固定在纳米机械悬臂梁上的方法,使得它们可以在不钝化下面的表面的情况下发挥作用。我们使用平衡理论定量描述了万古霉素、人类免疫缺陷病毒 1 抗原和凝血因子 VIII 在顶部和底部悬臂表面的竞争应力存在下被捕获在悬臂上的机械响应。我们表明,悬臂表面上每个受体分子的面积会影响配体-受体的结合,并在应力方面发挥重要作用。我们的结果提供了一种新的方法来感知生物分子,并将有助于创建超灵敏的生物传感器。