Conde João Pedro, Madaboosi Narayanan, Soares Ruben R G, Fernandes João Tiago S, Novo Pedro, Moulas Geraud, Chu Virginia
Instituto de Engenharia de Sistemas E Computadores-Microsistemas e Nanotecnologias (INESC MN) and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol, 9, 1000-029 Lisbon, Portugal Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001, Lisbon, Portugal
Instituto de Engenharia de Sistemas E Computadores-Microsistemas e Nanotecnologias (INESC MN) and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol, 9, 1000-029 Lisbon, Portugal.
Essays Biochem. 2016 Jun 30;60(1):121-31. doi: 10.1042/EBC20150013.
Biomolecular detection systems based on microfluidics are often called lab-on-chip systems. To fully benefit from the miniaturization resulting from microfluidics, one aims to develop 'from sample-to-answer' analytical systems, in which the input is a raw or minimally processed biological, food/feed or environmental sample and the output is a quantitative or qualitative assessment of one or more analytes of interest. In general, such systems will require the integration of several steps or operations to perform their function. This review will discuss these stages of operation, including fluidic handling, which assures that the desired fluid arrives at a specific location at the right time and under the appropriate flow conditions; molecular recognition, which allows the capture of specific analytes at precise locations on the chip; transduction of the molecular recognition event into a measurable signal; sample preparation upstream from analyte capture; and signal amplification procedures to increase sensitivity. Seamless integration of the different stages is required to achieve a point-of-care/point-of-use lab-on-chip device that allows analyte detection at the relevant sensitivity ranges, with a competitive analysis time and cost.
基于微流控技术的生物分子检测系统通常被称为芯片实验室系统。为了充分利用微流控技术带来的小型化优势,人们致力于开发“从样品到答案”的分析系统,其中输入为原始或经过最少处理的生物、食品/饲料或环境样品,输出为对一种或多种目标分析物的定量或定性评估。一般来说,此类系统需要整合多个步骤或操作来实现其功能。本综述将讨论这些操作阶段,包括流体处理,它确保所需流体在正确的时间、在适当的流动条件下到达特定位置;分子识别,它允许在芯片上的精确位置捕获特定分析物;将分子识别事件转化为可测量信号;在分析物捕获之前的样品制备;以及提高灵敏度的信号放大程序。要实现一种能够在相关灵敏度范围内进行分析物检测、具有有竞争力的分析时间和成本的即时检测/即时使用芯片实验室设备,需要将不同阶段进行无缝整合。