Suppr超能文献

差异共表达网络的功能分析与表征

Functional Analysis and Characterization of Differential Coexpression Networks.

作者信息

Hsu Chia-Lang, Juan Hsueh-Fen, Huang Hsuan-Cheng

机构信息

Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Sci Rep. 2015 Aug 18;5:13295. doi: 10.1038/srep13295.

Abstract

Differential coexpression analysis is emerging as a complement to conventional differential gene expression analysis. The identified differential coexpression links can be assembled into a differential coexpression network (DCEN) in response to environmental stresses or genetic changes. Differential coexpression analyses have been successfully used to identify condition-specific modules; however, the structural properties and biological significance of general DCENs have not been well investigated. Here, we analyzed two independent Saccharomyces cerevisiae DCENs constructed from large-scale time-course gene expression profiles in response to different situations. Topological analyses show that DCENs are tree-like networks possessing scale-free characteristics, but not small-world. Functional analyses indicate that differentially coexpressed gene pairs in DCEN tend to link different biological processes, achieving complementary or synergistic effects. Furthermore, the gene pairs lacking common transcription factors are sensitive to perturbation and hence lead to differential coexpression. Based on these observations, we integrated transcriptional regulatory information into DCEN and identified transcription factors that might cause differential coexpression by gain or loss of activation in response to different situations. Collectively, our results not only uncover the unique structural characteristics of DCEN but also provide new insights into interpretation of DCEN to reveal its biological significance and infer the underlying gene regulatory dynamics.

摘要

差异共表达分析正在成为传统差异基因表达分析的一种补充。所识别出的差异共表达联系可响应环境胁迫或基因变化而组装成一个差异共表达网络(DCEN)。差异共表达分析已成功用于识别条件特异性模块;然而,一般DCEN的结构特性和生物学意义尚未得到充分研究。在此,我们分析了两个独立的酿酒酵母DCEN,它们是根据大规模时间进程基因表达谱针对不同情况构建的。拓扑分析表明,DCEN是具有无标度特征的树状网络,而非小世界网络。功能分析表明,DCEN中差异共表达的基因对倾向于连接不同的生物学过程,从而实现互补或协同效应。此外,缺乏共同转录因子的基因对易受扰动影响,进而导致差异共表达。基于这些观察结果,我们将转录调控信息整合到DCEN中,并识别出可能通过在不同情况下激活的增减而导致差异共表达的转录因子。总体而言,我们的结果不仅揭示了DCEN独特的结构特征,还为解读DCEN以揭示其生物学意义并推断潜在的基因调控动态提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d527/4539605/aa9b5008fa81/srep13295-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验