Suppr超能文献

一种基于惩罚回归的用于全局关联检验的新型统计量。

A Novel Statistic for Global Association Testing Based on Penalized Regression.

作者信息

Austin Erin, Shen Xiaotong, Pan Wei

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America.

School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States Of America.

出版信息

Genet Epidemiol. 2015 Sep;39(6):415-26. doi: 10.1002/gepi.21915.

Abstract

Natural genetic structures like genes may contain multiple variants that work as a group to determine a biologic outcome. The effect of rare variants, mutations occurring in less than 5% of samples, is hypothesized to be explained best as groups collectively associated with a biologic function. Therefore, it is important to develop powerful association tests to identify a true association between an outcome of interest and a group of variants, in particular a group with many rare variants. In this article we first delineate a novel penalized regression-based global test for the association between sets of variants and a disease phenotype. Next, we use Genetic Analysis Workshop 18 (GAW18) data to assess the power of the new global association test to capture a relationship between an aggregated group of variants and a simulated hypertension status. Rare variant only, common variant only, and combined variant groups are studied. The power values are compared to those obtained from eight well-regarded global tests (Score, Sum, SSU, SSUw, UminP, aSPU, aSPUw, and sequence kernel association test (SKAT)) that do not use penalized regression and a set of tests using either the SSU or score statistics and least absolute shrinkage and selection operator penalty (LASSO) logistic regression. Association testing of rare variants with our method was the top performer when there was low linkage disequilibrium (LD) between and within causal variants. This was similarly true when simultaneously testing rare and common variants in low LD scenarios. Finally, our method was able to provide meaningful variant-specific association information.

摘要

像基因这样的天然遗传结构可能包含多个变体,这些变体作为一个整体发挥作用来决定生物学结果。罕见变体(即在少于5%的样本中出现的突变)的效应,据推测,最好解释为与生物学功能集体相关的一组变体。因此,开发强大的关联测试以识别感兴趣的结果与一组变体(特别是包含许多罕见变体的组)之间的真正关联非常重要。在本文中,我们首先描述了一种基于惩罚回归的新型全局测试,用于检测变体集与疾病表型之间的关联。接下来,我们使用遗传分析研讨会18(GAW18)的数据来评估新的全局关联测试捕捉一组聚合变体与模拟高血压状态之间关系的能力。我们研究了仅包含罕见变体、仅包含常见变体以及组合变体组的情况。将这些功效值与从八个备受认可的全局测试(得分、总和、SSU、SSUw、UminP、aSPU、aSPUw和序列核关联测试(SKAT))获得的功效值进行比较,这些测试不使用惩罚回归,还与一组使用SSU或得分统计以及最小绝对收缩和选择算子惩罚(LASSO)逻辑回归的测试进行比较。当因果变体之间和内部的连锁不平衡(LD)较低时,使用我们的方法对罕见变体进行关联测试表现最佳。在低LD情况下同时测试罕见和常见变体时也是如此。最后,我们的方法能够提供有意义的特定变体关联信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验