Suppr超能文献

关于数量性状和罕见变异的稳健关联测试

On Robust Association Testing for Quantitative Traits and Rare Variants.

作者信息

Wei Peng, Cao Ying, Zhang Yiwei, Xu Zhiyuan, Kwak Il-Youp, Boerwinkle Eric, Pan Wei

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

Human Genetics Center, The University of Texas School of Public Health, Houston, Texas 77030.

出版信息

G3 (Bethesda). 2016 Dec 7;6(12):3941-3950. doi: 10.1534/g3.116.035485.

Abstract

With the advance of sequencing technologies, it has become a routine practice to test for association between a quantitative trait and a set of rare variants (RVs). While a number of RV association tests have been proposed, there is a dearth of studies on the robustness of RV association testing for nonnormal distributed traits, e.g., due to skewness, which is ubiquitous in cohort studies. By extensive simulations, we demonstrate that commonly used RV tests, including sequence kernel association test (SKAT) and optimal unified SKAT (SKAT-O), are not robust to heavy-tailed or right-skewed trait distributions with inflated type I error rates; in contrast, the adaptive sum of powered score (aSPU) test is much more robust. Here we further propose a robust version of the aSPU test, called aSPUr. We conduct extensive simulations to evaluate the power of the tests, finding that for a larger number of RVs, aSPU is often more powerful than SKAT and SKAT-O, owing to its high data-adaptivity. We also compare different tests by conducting association analysis of triglyceride levels using the NHLBI ESP whole-exome sequencing data. The QQ plots for SKAT and SKAT-O were severely inflated (λ = 1.89 and 1.78, respectively), while those for aSPU and aSPUr behaved normally. Due to its relatively high robustness to outliers and high power of the aSPU test, we recommend its use complementary to SKAT and SKAT-O. If there is evidence of inflated type I error rate from the aSPU test, we would recommend the use of the more robust, but less powerful, aSPUr test.

摘要

随着测序技术的进步,检测数量性状与一组罕见变异(RVs)之间的关联已成为常规做法。虽然已经提出了许多RV关联检验方法,但对于非正态分布性状(例如由于偏度导致的,这在队列研究中很常见)的RV关联检验的稳健性研究却很少。通过广泛的模拟,我们证明常用的RV检验,包括序列核关联检验(SKAT)和最优统一SKAT(SKAT - O),对于重尾或右偏性状分布不稳健,会出现I型错误率膨胀的情况;相比之下,自适应加权得分总和(aSPU)检验则更为稳健。在此,我们进一步提出了一种稳健版的aSPU检验,称为aSPUr。我们进行了广泛的模拟以评估这些检验的功效,发现对于大量的RVs,aSPU由于其高数据适应性,通常比SKAT和SKAT - O更具功效。我们还使用美国国立心肺血液研究所外显子组测序计划(NHLBI ESP)的全外显子测序数据对甘油三酯水平进行关联分析,比较了不同的检验方法。SKAT和SKAT - O的QQ图严重膨胀(分别为λ = 1.89和1.78),而aSPU和aSPUr的QQ图表现正常。由于aSPU检验对异常值具有相对较高的稳健性且功效较高,我们建议将其与SKAT和SKAT - O互补使用。如果aSPU检验有I型错误率膨胀的证据,我们建议使用更稳健但功效较低的aSPUr检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab1b/5144964/2dc0ae5d9c59/3941f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验