Whittington A Carl, Larion Mioara, Bowler Joseph M, Ramsey Kristen M, Brüschweiler Rafael, Miller Brian G
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306;
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11553-8. doi: 10.1073/pnas.1506664112. Epub 2015 Aug 17.
Cooperativity in human glucokinase (GCK), the body's primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme's small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) spectrum of (13)C-Ile-labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the (1)H-(13)C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems.
人类葡萄糖激酶(GCK)是人体主要的葡萄糖传感器,也是葡萄糖稳态疾病的主要决定因素,其协同性与教科书上的别构模型有着根本区别,因为GCK是单体,仅含有一个葡萄糖结合位点。先前的研究表明,该酶小结构域内毫秒级的有序-无序转变控制着协同性。在此,我们通过有限蛋白酶解,将未结合配体的GCK中的无序位点定位到一个30个残基的活性位点环上,该环在葡萄糖结合时会关闭。该环的位置随机化,再结合在葡萄糖激酶缺陷型细菌中的基因筛选,发现了一种协同性显著降低的高活性GCK变体。对该环变体以及与高胰岛素血症性低血糖相关的GCK变体进行生化和结构分析,揭示了两种不同的酶激活机制。在α型激活中,葡萄糖亲和力增加,活性位点环的蛋白水解敏感性受到抑制,并且用¹³C-Ile标记的酶的¹H-¹³C异核多量子相干(HMQC)谱类似于葡萄糖结合状态。在β型激活中,葡萄糖亲和力基本不变,环的蛋白水解敏感性增强,并且¹H-¹³C HMQC谱显示整体结构没有扰动。利用这两种激活机制,我们设计了一种完全无协同性的GCK变体,其功能特性与其他己糖激酶同工酶无法区分,并且催化效率比野生型GCK提高了百倍。这项工作阐明了单体酶中产生别构效应的特定结构特征,并提出了一种将协同性引入缺乏传统别构系统典型结构框架的蛋白质中的通用策略。