Suppr超能文献

23个残基的C末端α螺旋控制单体人葡萄糖激酶的动力学协同性。

23-Residue C-terminal alpha-helix governs kinetic cooperativity in monomeric human glucokinase.

作者信息

Larion Mioara, Miller Brian G

机构信息

Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA.

出版信息

Biochemistry. 2009 Jul 7;48(26):6157-65. doi: 10.1021/bi9007534.

Abstract

Human glucokinase is a monomeric enzyme that displays a sigmoidal steady-state kinetic response toward increasing glucose concentrations. The allosteric regulation produced by glucose is postulated to arise from the slow interconversion of multiple enzyme conformations during the course of catalysis. Crystallographic data suggest that structural rearrangements linked to glucokinase cooperativity involve a substrate-induced repositioning of an alpha-helix (alpha13) located at the C-terminus of the polypeptide. Here, we show that removal of helix alpha13 abolishes cooperativity and restores Michaelis-Menten kinetics, while reducing the k(cat) value of the wild-type enzyme by 160-fold. The impaired catalytic activity of the truncated enzyme is not rescued by the trans addition of a synthetic alpha13 peptide. Unexpectedly, the K(m glucose) value of a glucokinase variant lacking alpha13 is equivalent to the K(0.5 glucose) value of the full-length enzyme. Glucokinase steady-state kinetics is unaffected by the elongation of alpha13 via the addition of a C-terminal polyalanine tail. To explore the link between cooperativity and the primary sequence of alpha13, we randomized seven residues within the helix core. Genetic selection experiments in a glucokinase-deficient bacterium identified a variety of hyperactive alpha13 variants that display lower K(0.5 glucose) values, Hill coefficients near unity, and enhanced equilibrium binding affinities for glucose. The present results demonstrate that alpha13 plays an essential role in facilitating cooperativity. Our findings also establish a link between the primary amino acid sequence of helix alpha13 and the functional dynamics of the glucokinase scaffold that are required for allostery.

摘要

人葡萄糖激酶是一种单体酶,对葡萄糖浓度升高表现出S形稳态动力学响应。据推测,葡萄糖产生的变构调节源于催化过程中多种酶构象的缓慢相互转化。晶体学数据表明,与葡萄糖激酶协同性相关的结构重排涉及位于多肽C末端的α-螺旋(α13)的底物诱导重新定位。在这里,我们表明去除α13螺旋消除了协同性并恢复了米氏动力学,同时将野生型酶的k(cat)值降低了160倍。截短酶受损的催化活性不能通过反式添加合成的α13肽来挽救。出乎意料的是,缺乏α13的葡萄糖激酶变体的K(m葡萄糖)值等同于全长酶的K(0.5葡萄糖)值。葡萄糖激酶的稳态动力学不受通过添加C末端聚丙氨酸尾巴延长α13的影响。为了探索协同性与α13一级序列之间的联系,我们将螺旋核心内的七个残基随机化。在葡萄糖激酶缺陷型细菌中的遗传选择实验鉴定出了多种高活性α13变体,它们表现出较低的K(0.5葡萄糖)值、接近1的希尔系数以及对葡萄糖增强的平衡结合亲和力。目前的结果表明,α13在促进协同性方面起着至关重要的作用。我们的发现还建立了α13螺旋的一级氨基酸序列与变构所需的葡萄糖激酶支架功能动力学之间的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验