Martinez Juliana A, Larion Mioara, Conejo Maria S, Porter Carol M, Miller Brian G
Department of Chemistry and Biochemistry, 4005 Chemical Sciences Laboratory, Florida State University, Tallahassee, Florida, 32306-4390.
Protein Sci. 2014 Jul;23(7):915-22. doi: 10.1002/pro.2473. Epub 2014 Apr 30.
Glucokinase (GCK, hexokinase IV) is a monomeric enzyme with a single glucose binding site that displays steady-state kinetic cooperativity, a functional characteristic that affords allosteric regulation of GCK activity. Structural evidence suggests that connecting loop I, comprised of residues 47-71, facilitates cooperativity by dictating the rate and scope of motions between the large and small domains of GCK. Here we investigate the impact of varying the length and amino acid sequence of connecting loop I upon GCK cooperativity. We find that sequential, single amino acid deletions from the C-terminus of connecting loop I cause systematic decreases in cooperativity. Deleting up to two loop residues leaves the kcat value unchanged; however, removing three or more residues reduces kcat by 1000-fold. In contrast, the glucose K0.5 and KD values are unaffected by shortening the connecting loop by up to six residues. Substituting alanine or glycine for proline-66, which adopts a cis conformation in some GCK crystal structures, does not alter cooperativity, indicating that cis/trans isomerization of this loop residue does not govern slow conformational reorganizations linked to hysteresis. Replacing connecting loop I with the corresponding loop sequence from the catalytic domain of the noncooperative isozyme human hexokinase I (HK-I) eliminates cooperativity without impacting the kcat and glucose K0.5 values. Our results indicate that catalytic turnover requires a minimal length of connecting loop I, whereas the loop has little impact upon the binding affinity of GCK for glucose. We propose a model in which the primary structure of connecting loop I affects cooperativity by influencing conformational dynamics, without altering the equilibrium distribution of GCK conformations.
葡萄糖激酶(GCK,己糖激酶IV)是一种单体酶,具有单个葡萄糖结合位点,表现出稳态动力学协同性,这一功能特性可对GCK活性进行变构调节。结构证据表明,由47 - 71位残基组成的连接环I通过决定GCK大小结构域之间运动的速率和范围来促进协同性。在此,我们研究改变连接环I的长度和氨基酸序列对GCK协同性的影响。我们发现,从连接环I的C末端依次进行单个氨基酸缺失会导致协同性系统性降低。删除多达两个环残基时,kcat值不变;然而,去除三个或更多残基会使kcat降低1000倍。相比之下,将连接环缩短多达六个残基对葡萄糖K0.5和KD值没有影响。在一些GCK晶体结构中,脯氨酸 - 66会采取顺式构象,用丙氨酸或甘氨酸取代该残基不会改变协同性,这表明该环残基的顺/反异构化并不控制与滞后相关的缓慢构象重组。用非协同同工酶人己糖激酶I(HK - I)催化结构域的相应环序列替换连接环I可消除协同性,而不影响kcat和葡萄糖K0.5值。我们的结果表明,催化周转需要连接环I的最小长度,而该环对GCK与葡萄糖的结合亲和力影响很小。我们提出了一个模型,其中连接环I的一级结构通过影响构象动力学来影响协同性,而不改变GCK构象的平衡分布。