Sakalli Ilkay, Knapp Ernst-Walter
Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, 14195, Berlin, Germany.
J Comput Chem. 2015 Nov 5;36(29):2147-57. doi: 10.1002/jcc.24053. Epub 2015 Aug 18.
Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values.
了解pK(A)值是理解蛋白质在生命系统中功能的一个重要因素。我们提出了一种新方法,证明求解线性化泊松-玻尔兹曼方程(lPBE)的有限元(FE)方法可以成功地用于高精度计算蛋白质中的pK(A)值,作为有限差分(FD)方法的一种可能替代方法。为此,我们在Karlsberg+程序框架中实现了软件分子有限元求解器(mFES)来计算pK(A)值。这项工作重点比较了使用成熟的FD方法和新开发的FE方法mFES获得的pK(A)计算结果,使用无构象变化的蛋白质晶体结构求解lPBE。使用mFES建立了与FD方法相比具有相似数量未知数的精确和粗略模型系统。我们的FE方法给出了pK(A)值和可滴定基团相互作用能的计算结果,其准确性具有可比性。我们引入了不同的热力学循环来评估pK(A)值,并展示了FE方法中不同参数如何影响计算得到的pK(A)值的准确性。