Altman Michael D, Bardhan Jaydeep P, White Jacob K, Tidor Bruce
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
J Comput Chem. 2009 Jan 15;30(1):132-53. doi: 10.1002/jcc.21027.
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson-Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Fourth, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as nonrigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods.
我们提出了一种边界元方法(BEM)的实现方案,用于使用线性化泊松 - 玻尔兹曼方程精确求解生物分子静电学中的问题。推动这一实现的是创建一个能够精确描述生物分子连续介质模型中普遍存在的几何形状和拓扑结构的求解器的愿望。这一实现得益于专门为此工作开发或实现的四项技术的综合。首先,用于描述介电和离子排斥边界的分子表面和可及表面用能忠实再现分子几何形状的弯曲边界元进行离散化。其次,我们避免显式形成密集的BEM矩阵,而是使用矩阵压缩算法(FFTSVD)加速矩阵 - 向量乘法,通过预处理迭代方法(GMRES)求解线性系统。第三,采用稳健的数值积分方法精确评估弯曲边界元上的奇异和近奇异积分。第四,我们提出了一种通用的边界积分方法,能够对任意数量的具有不同介电常数、可能的盐处理和点电荷的嵌入均匀介电区域进行建模。所提出的BEM实现与标准有限差分技术的比较表明,对于某些类别的静电计算,例如确定绝对静电溶剂化和刚性结合自由能,BEM方法改进的收敛特性会对计算的能量学产生重大影响。我们还证明,当使用更复杂的技术(如非刚性结合模型)来计算分子修饰的相对静电效应时,弯曲元BEM提供的更高精度很重要。此外,我们表明,对于需要使用相同分子几何形状进行多次求解的静电计算,如电荷优化或成分分析,可以使用所提出的BEM方法高精度地计算,计算时间与传统有限差分方法相当。