Suppr超能文献

关于泊松-玻尔兹曼方程中电荷奇点的消除。

On removal of charge singularity in Poisson-Boltzmann equation.

作者信息

Cai Qin, Wang Jun, Zhao Hong-Kai, Luo Ray

机构信息

Department of Biomedical Engineering, University of California, Irvine, California 92697, USA.

出版信息

J Chem Phys. 2009 Apr 14;130(14):145101. doi: 10.1063/1.3099708.

Abstract

The Poisson-Boltzmann theory has become widely accepted in modeling electrostatic solvation interactions in biomolecular calculations. However the standard practice of atomic point charges in molecular mechanics force fields introduces singularity into the Poisson-Boltzmann equation. The finite-difference/finite-volume discretization approach to the Poisson-Boltzmann equation alleviates the numerical difficulty associated with the charge singularity but introduces discretization error into the electrostatic potential. Decomposition of the electrostatic potential has been explored to remove the charge singularity explicitly to achieve higher numerical accuracy in the solution of the electrostatic potential. In this study, we propose an efficient method to overcome the charge singularity problem. In our framework, two separate equations for two different potentials in two different regions are solved simultaneously, i.e., the reaction field potential in the solute region and the total potential in the solvent region. The proposed method can be readily implemented with typical finite-difference Poisson-Boltzmann solvers and return the singularity-free reaction field potential with a single run. Test runs on 42 small molecules and 4 large proteins show a very high agreement between the reaction field energies computed by the proposed method and those by the classical finite-difference Poisson-Boltzmann method. It is also interesting to note that the proposed method converges faster than the classical method, though additional time is needed to compute Coulombic potential on the dielectric boundary. The higher precision, accuracy, and efficiency of the proposed method will allow for more robust electrostatic calculations in molecular mechanics simulations of complex biomolecular systems.

摘要

泊松 - 玻尔兹曼理论在生物分子计算中模拟静电溶剂化相互作用方面已被广泛接受。然而,分子力学力场中原子点电荷的标准做法会给泊松 - 玻尔兹曼方程引入奇异性。对泊松 - 玻尔兹曼方程采用有限差分/有限体积离散化方法可减轻与电荷奇异性相关的数值困难,但会给静电势引入离散化误差。人们已探索静电势的分解以明确消除电荷奇异性,从而在静电势的求解中获得更高的数值精度。在本研究中,我们提出一种有效方法来克服电荷奇异性问题。在我们的框架中,同时求解两个不同区域中两个不同势的两个单独方程,即溶质区域中的反应场势和溶剂区域中的总势。所提出的方法可以很容易地用典型的有限差分泊松 - 玻尔兹曼求解器实现,并且单次运行就能返回无奇异性的反应场势。对42个小分子和4个大蛋白质的测试运行表明,所提出方法计算的反应场能量与经典有限差分泊松 - 玻尔兹曼方法计算的反应场能量之间具有非常高的一致性。还值得注意的是,尽管在计算介电边界上的库仑势时需要额外的时间,但所提出的方法比经典方法收敛得更快。所提出方法的更高精度、准确性和效率将使复杂生物分子系统的分子力学模拟中的静电计算更加稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验