Suppr超能文献

非水锂氧电池中界面碳酸盐形成的双重问题

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.

作者信息

McCloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C

机构信息

†Almaden Research Center, IBM Research, 650 Harry Road, San Jose, California 95120, United States.

‡Volkswagen Group, Inc., Belmont, California 94002, United States.

出版信息

J Phys Chem Lett. 2012 Apr 19;3(8):997-1001. doi: 10.1021/jz300243r. Epub 2012 Mar 30.

Abstract

We use XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) to show that small amounts of carbonates formed during discharge and charge of Li-O2 cells in ether electrolytes originate from reaction of Li2O2 (or LiO2) both with the electrolyte and with the C cathode. Reaction with the cathode forms approximately a monolayer of Li2CO3 at the C-Li2O2 interface, while reaction with the electrolyte forms approximately a monolayer of carbonate at the Li2O2-electrolyte interface during charge. A simple electrochemical model suggests that the carbonate at the electrolyte-Li2O2 interface is responsible for the large potential increase during charging (and hence indirectly for the poor rechargeability). A theoretical charge-transport model suggests that the carbonate layer at the C-Li2O2 interface causes a 10-100 fold decrease in the exchange current density. These twin "interfacial carbonate problems" are likely general and will ultimately have to be overcome to produce a highly rechargeable Li-air battery.

摘要

我们使用X射线光电子能谱(XPS)以及同位素标记结合差分电化学质谱(DEMS)来表明,在醚类电解质中锂氧电池充放电过程中形成的少量碳酸盐源自Li2O2(或LiO2)与电解质以及与碳阴极的反应。与阴极的反应在C-Li2O2界面形成约单层的Li2CO3,而在充电过程中与电解质的反应在Li2O2-电解质界面形成约单层的碳酸盐。一个简单的电化学模型表明,电解质-Li2O2界面处的碳酸盐是充电过程中电位大幅升高的原因(因此间接导致可再充电性差)。一个理论电荷传输模型表明,C-Li2O2界面处的碳酸盐层会使交换电流密度降低10到100倍。这两个“界面碳酸盐问题”可能具有普遍性,要制造出高度可再充电的锂空气电池,最终必须克服这些问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验