Suppr超能文献

可充电锂氧电池阴极中的二甲基亚砜-过氧化锂界面:稳定性的理论与实验视角

DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.

作者信息

Schroeder Marshall A, Kumar Nitin, Pearse Alexander J, Liu Chanyuan, Lee Sang Bok, Rubloff Gary W, Leung Kevin, Noked Malachi

机构信息

†Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.

§Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.

出版信息

ACS Appl Mater Interfaces. 2015 Jun 3;7(21):11402-11. doi: 10.1021/acsami.5b01969. Epub 2015 May 19.

Abstract

One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.

摘要

实现非水锂氧电池的最大障碍之一是找到一种在电池工作条件下化学和电化学稳定的溶剂。二甲基亚砜(DMSO)是可充电锂氧电池研究中一个有吸引力的候选溶剂;然而,关于其在锂氧阴极表面的稳定性仍存在重大争议。我们进行了多项实验(原位XPS、FTIR、拉曼和XRD),评估了DMSO-Li2O2界面的稳定性,并报告了对先前发表研究的看法。我们的电化学实验表明,通过原子层沉积制备的铂@碳纳米管核壳阴极的基于DMSO的工作锂氧电池具有长期稳定的循环性能,特别是每个循环有>45次40小时的放电循环。这项工作得到了Li2O2上DMSO降解途径的密度泛函理论计算的补充。实验和理论证据都强烈表明,在所报道的工作条件下,DMSO在Li2O2表面化学和电化学稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验