School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
Materials Research & Engineering Center, R&D Division, Hyundai Motor Company, Uiwang, 16082 (Republic of, Korea.
Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202212942. doi: 10.1002/anie.202212942. Epub 2022 Dec 16.
The LiOH-based cathode chemistry has demonstrated potential for high-energy Li-O batteries. However, the understanding of such complex chemistry remains incomplete. Herein, we use the combined experimental methods with ab initio calculations to study LiOH chemistry. We provide a unified reaction mechanism for LiOH formation during discharge via net 4 e oxygen reduction, in which Li O acts as intermediate in low water-content electrolyte but LiHO as intermediate in high water-content electrolyte. Besides, LiOH decomposes via 1 e oxidation during charge, generating surface-reactive hydroxyl species that degrade organic electrolytes and generate protons. These protons lead to early removal of LiOH, followed by a new high-potential charge plateau (1 e water oxidation). At following cycles, these accumulated protons lead to a new high-potential discharge plateau, corresponding to water formation. Our findings shed light on understanding of 4 e cathode chemistries in metal-air batteries.
基于 LiOH 的正极化学在高能锂氧电池中具有潜力。然而,对这种复杂化学的理解仍不完整。在此,我们使用结合实验方法与从头算计算来研究 LiOH 化学。我们提供了一个统一的反应机制,用于解释放电过程中通过净 4e 氧还原形成 LiOH,其中在低水含量电解质中 LiO 作为中间体,而在高水含量电解质中 LiHO 作为中间体。此外,充电过程中通过 1e 氧化使 LiOH 分解,生成表面反应性的羟基物种,这些物种会降解有机电解质并产生质子。这些质子导致 LiOH 早期去除,随后出现新的高电位充电平台(1e 水氧化)。在随后的循环中,这些积累的质子导致新的高电位放电平台,对应于水的形成。我们的发现为理解金属-空气电池中的 4e 正极化学提供了线索。