Upadhyay Vaibhav, Bandi Swati, Panja Sudipta, Saba Laura, Mallela Krishna M G
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, Colorado 80045, United States.
ACS Omega. 2020 Jan 10;5(5):2159-2168. doi: 10.1021/acsomega.9b02911. eCollection 2020 Feb 11.
Genetic mutations in Duchenne muscular dystrophy (DMD) gene affecting the expression of dystrophin protein lead to a number of muscle disorders collectively called dystrophinopathies. In addition to muscle dystrophin, mutations in brain-specific dystrophin isoforms, in particular those that are expressed in the brain cortex and Purkinje neurons, result in cognitive impairment associated with DMD. These isoforms carry minor variations in the flanking region of the N-terminal actin-binding domain (ABD1) of dystrophin, which is composed of two calponin-homology (CH) domains in tandem. Determining the effect of these sequence variations is critical for understanding the mechanisms that govern varied symptoms of the disease. We studied the impact of differences in the N-terminal flanking region on the structure and function of dystrophin tandem CH domain isoforms. The amino acid changes did not affect the global structure of the protein but drastically affected the thermodynamic stability, with the muscle isoform more stable than the brain and Purkinje isoforms. Actin binding investigated with actin from different sources (skeletal muscle, smooth muscle, cardiac muscle, and platelets) revealed that the muscle isoform binds to filamentous actin (F-actin) with a lower affinity compared to the brain and Purkinje isoforms, and a similar trend was observed with actin from different sources. In addition, all isoforms showed a higher affinity to smooth muscle actin in comparison to actin from other sources. In conclusion, tandem CH domain isoforms might be using minor sequence variations in the N-terminal flanking regions to modulate their thermodynamic stability and actin-binding function, thus leading to specificity in dystrophin-actin interactions in various tissues.
杜兴氏肌肉营养不良症(DMD)基因中的基因突变会影响抗肌萎缩蛋白的表达,从而导致一系列统称为抗肌萎缩蛋白病的肌肉疾病。除了肌肉中的抗肌萎缩蛋白,脑特异性抗肌萎缩蛋白亚型的突变,特别是在大脑皮层和浦肯野神经元中表达的那些突变,会导致与DMD相关的认知障碍。这些亚型在抗肌萎缩蛋白N端肌动蛋白结合结构域(ABD1)的侧翼区域存在微小差异,该结构域由两个串联的钙调蛋白同源(CH)结构域组成。确定这些序列变异的影响对于理解控制该疾病不同症状的机制至关重要。我们研究了N端侧翼区域差异对抗肌萎缩蛋白串联CH结构域亚型的结构和功能的影响。氨基酸变化不影响蛋白质的整体结构,但极大地影响了热力学稳定性,肌肉亚型比大脑和浦肯野亚型更稳定。用来自不同来源(骨骼肌、平滑肌、心肌和血小板)的肌动蛋白进行的肌动蛋白结合研究表明,与大脑和浦肯野亚型相比,肌肉亚型与丝状肌动蛋白(F-肌动蛋白)的结合亲和力较低,并且在来自不同来源的肌动蛋白中也观察到了类似的趋势。此外,与来自其他来源的肌动蛋白相比,所有亚型对平滑肌肌动蛋白的亲和力更高。总之,串联CH结构域亚型可能利用N端侧翼区域的微小序列变异来调节其热力学稳定性和肌动蛋白结合功能,从而导致抗肌萎缩蛋白与不同组织中肌动蛋白相互作用的特异性。