Stetsovych Vitalii, Pagliuca Federico, Dvořák Filip, Duchoň Tomáš, Vorokhta Mykhailo, Aulická Marie, Lachnitt Jan, Schernich Stefan, Matolínová Iva, Veltruská Kateřina, Skála Tomáš, Mazur Daniel, Mysliveček Josef, Libuda Jörg, Matolín Vladimír
†Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Praha 8, Czech Republic.
‡Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia and S3, Istituto Nanoscienze - CNR, Via G. Campi 213/a, 41125 Modena, Italy.
J Phys Chem Lett. 2013 Mar 21;4(6):866-71. doi: 10.1021/jz400187j. Epub 2013 Mar 4.
Thin films of reduced ceria supported on metals are often applied as substrates in model studies of the chemical reactivity of ceria based catalysts. Of special interest are the properties of oxygen vacancies in ceria. However, thin films of ceria prepared by established methods become increasingly disordered as the concentration of vacancies increases. Here, we propose an alternative method for preparing ordered reduced ceria films based on the physical vapor deposition and interfacial reaction of Ce with CeO2 films. The method yields bulk-truncated layers of cubic c-Ce2O3. Compared to CeO2 these layers contain 25% of perfectly ordered vacancies in the surface and subsurface allowing well-defined measurements of the properties of ceria in the limit of extreme reduction. Experimentally, c-Ce2O3(111) layers are easily identified by a characteristic 4 × 4 surface reconstruction with respect to CeO2(111). In addition, c-Ce2O3 layers represent an experimental realization of a normally unstable polymorph of Ce2O3. During interfacial reaction, c-Ce2O3 nucleates on the interface between CeO2 buffer and Ce overlayer and is further stabilized most likely by the tetragonal distortion of the ceria layers on Cu. The characteristic kinetics of the metal-oxide interfacial reactions may represent a vehicle for making other metastable oxide structures experimentally available.
负载在金属上的还原二氧化铈薄膜常用于基于二氧化铈的催化剂化学反应性模型研究的基底。特别令人感兴趣的是二氧化铈中氧空位的性质。然而,通过既定方法制备的二氧化铈薄膜随着空位浓度的增加变得越来越无序。在此,我们提出一种基于Ce与CeO₂薄膜的物理气相沉积和界面反应来制备有序还原二氧化铈薄膜的替代方法。该方法产生立方c-Ce₂O₃的体截断层。与CeO₂相比,这些层在表面和次表面含有25%的完美有序空位,从而能够在极端还原极限下对二氧化铈的性质进行明确的测量。在实验上,相对于CeO₂(111),c-Ce₂O₃(111)层很容易通过特征性的4×4表面重构来识别。此外,c-Ce₂O₃层代表了一种通常不稳定的Ce₂O₃多晶型的实验实现。在界面反应过程中,c-Ce₂O₃在CeO₂缓冲层和Ce覆盖层之间的界面上形核,并很可能通过铜上二氧化铈层的四方畸变进一步稳定。金属-氧化物界面反应的特征动力学可能是一种使其他亚稳氧化物结构在实验上可用的手段。