van der Molen Aart J, Miclea Razvan L, Geleijns Jacob, Joemai Raoul M S
1 All authors: Department of Radiology, C-2S, Leiden University Medical Center, Albinusdreef 2, NL-2333 ZA Leiden, The Netherlands.
AJR Am J Roentgenol. 2015 Sep;205(3):572-7. doi: 10.2214/AJR.14.13862.
The purpose of this study was to survey the radiation dose used in CT urography (CTU) in routine clinical practice, both before and after implementation of a scanning protocol that uses iterative reconstruction (Adaptive Iterative Dose Reduction 3D [AIDR 3D]).
We retrospectively surveyed dose reports from consecutive CTU examinations performed in 2011 with the use of 64- and 320-MDCT scanners that were reconstructed with filtered back projection (FBP) and from CTU examinations performed from May 2012 through November 2013 that were reconstructed with the use of AIDR 3D. Findings from these dose reports were then correlated with such patient characteristics as weight and body mass index (BMI; weight in kilograms divided by the square of height in meters). Only dose reports from single-bolus three-phase CTU examinations were included in the study. The volume CT dose index, dose-length product (DLP), and effective dose were surveyed both per examination and per phase by use of published effective dose DLP conversion factors. Image quality was evaluated subjectively for a subset of patients.
The two study cohorts included 82 patients (median patient weight, 75.0 kg; median BMI, 25.3) who underwent CTU with FBP and 85 patients (median patient weight, 78.0 kg; median BMI, 24.5) who underwent CTU with AIDR 3D. The median total DLP and median effective dose were 924 mGy · cm and 13.0 mSv, respectively, in the CTU with the FBP cohort and 433 mGy · cm and 6.1 mSv, respectively, in the CTU with the AIDR 3D cohort. The median DLP in the unenhanced, nephrogenic, and excretory phases was 218, 300, and 441 mGy · cm, respectively, in patients undergoing CTU with FBP and 114, 121, and 190 mGy · cm, respectively, in patients undergoing CTU with AIDR 3D. Image quality was diagnostic in both groups, with relatively fewer artifacts noted on scans obtained using CTU with AIDR 3D.
Our study presents detailed dose data from three-phase CTU examinations performed both before and after implementation of iterative reconstruction. Implementation of a CTU protocol using iterative reconstruction resulted in a mean effective dose of 6.1 mSv with preservation of clinical diagnostic image quality.
本研究旨在调查在常规临床实践中,采用迭代重建技术(自适应迭代剂量降低3D[AIDR 3D])的扫描方案实施前后,CT尿路造影(CTU)所使用的辐射剂量。
我们回顾性调查了2011年使用64层和320层MDCT扫描仪进行的连续CTU检查的剂量报告,这些检查采用滤波反投影(FBP)重建,以及2012年5月至2013年11月进行的采用AIDR 3D重建的CTU检查的剂量报告。然后将这些剂量报告的结果与患者体重和体重指数(BMI;体重千克数除以身高米数的平方)等患者特征相关联。本研究仅纳入单剂量三期CTU检查的剂量报告。通过使用已公布的有效剂量DLP转换因子,对每次检查和每个阶段的容积CT剂量指数、剂量长度乘积(DLP)和有效剂量进行了调查。对一部分患者的图像质量进行了主观评估。
两个研究队列分别包括82例接受FBP重建CTU检查的患者(患者体重中位数为75.0 kg;BMI中位数为25.3)和85例接受AIDR 3D重建CTU检查的患者(患者体重中位数为78.0 kg;BMI中位数为24.5)。FBP重建CTU队列中,总DLP中位数和有效剂量中位数分别为924 mGy·cm和13.0 mSv,AIDR 3D重建CTU队列中分别为433 mGy·cm和6.1 mSv。在接受FBP重建CTU检查的患者中,未增强期、肾实质期和排泄期的DLP中位数分别为218、300和441 mGy·cm,在接受AIDR 3D重建CTU检查的患者中分别为114、121和190 mGy·cm。两组的图像质量均具有诊断价值,在使用AIDR 3D重建的CTU扫描中发现的伪影相对较少。
我们的研究提供了迭代重建技术实施前后进行的三期CTU检查的详细剂量数据。采用迭代重建技术的CTU方案实施后,平均有效剂量为6.1 mSv,同时保留了临床诊断图像质量。