Suppr超能文献

相似文献

1
Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
IEEE Trans Biomed Eng. 2016 Apr;63(4):737-46. doi: 10.1109/TBME.2015.2469741. Epub 2015 Aug 20.
2
Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
J Neural Eng. 2014 Dec;11(6):066013. doi: 10.1088/1741-2560/11/6/066013. Epub 2014 Nov 14.
3
Use of probabilistic weights to enhance linear regression myoelectric control.
J Neural Eng. 2015 Dec;12(6):066030. doi: 10.1088/1741-2560/12/6/066030. Epub 2015 Nov 23.
4
Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1119-23. doi: 10.1109/EMBC.2015.7318562.
5
Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
J Electromyogr Kinesiol. 2017 Jun;34:24-36. doi: 10.1016/j.jelekin.2017.03.004. Epub 2017 Mar 29.
6
Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes.
J Electromyogr Kinesiol. 2019 Aug;47:10-18. doi: 10.1016/j.jelekin.2019.04.003. Epub 2019 Apr 16.
7
Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal.
IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80. doi: 10.1109/TBME.2008.2007967. Epub 2008 Oct 31.
9
Real-time, simultaneous myoelectric control using force and position-based training paradigms.
IEEE Trans Biomed Eng. 2014 Feb;61(2):279-87. doi: 10.1109/TBME.2013.2281595.

引用本文的文献

1
Learning dynamics of muscle synergies during non-biomimetic control maps.
Wearable Technol. 2025 Jan 20;6:e1. doi: 10.1017/wtc.2024.24. eCollection 2025.
2
Enhancing Force Control of Prosthetic Controller for Hand Prosthesis by Mimicking Biological Properties.
IEEE J Transl Eng Health Med. 2023 Sep 29;12:66-75. doi: 10.1109/JTEHM.2023.3320715. eCollection 2024.
4
Virtual regression-based myoelectric hand-wrist prosthesis control and electrode site selection using no force feedback.
Biomed Signal Process Control. 2023 Apr;82. doi: 10.1016/j.bspc.2023.104602. Epub 2023 Jan 23.
6
A New Labeling Approach for Proportional Electromyographic Control.
Sensors (Basel). 2022 Feb 10;22(4):1368. doi: 10.3390/s22041368.
7
Comparison of Myoelectric Control Schemes for Simultaneous Hand and Wrist Movement using Chronically Implanted Electromyography: A Case Series.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6224-6230. doi: 10.1109/EMBC46164.2021.9630845.
8
End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks.
Front Neurosci. 2021 Nov 17;15:777329. doi: 10.3389/fnins.2021.777329. eCollection 2021.
10
A novel framework for designing a multi-DoF prosthetic wrist control using machine learning.
Sci Rep. 2021 Jul 22;11(1):15050. doi: 10.1038/s41598-021-94449-1.

本文引用的文献

1
Logistic-weighted regression improves decoding of finger flexion from electrocorticographic signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2629-32. doi: 10.1109/EMBC.2014.6944162.
2
Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
J Neural Eng. 2014 Dec;11(6):066013. doi: 10.1088/1741-2560/11/6/066013. Epub 2014 Nov 14.
3
First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand.
J Neurosci Methods. 2015 Apr 15;244:85-93. doi: 10.1016/j.jneumeth.2014.07.016. Epub 2014 Aug 4.
4
Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control.
IEEE Trans Biomed Eng. 2015 Jan;62(1):218-26. doi: 10.1109/TBME.2014.2344854. Epub 2014 Jul 31.
5
On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.
J Electromyogr Kinesiol. 2014 Oct;24(5):770-7. doi: 10.1016/j.jelekin.2014.06.009. Epub 2014 Jun 30.
6
Support vector regression for improved real-time, simultaneous myoelectric control.
IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1198-209. doi: 10.1109/TNSRE.2014.2323576. Epub 2014 May 16.
7
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):269-79. doi: 10.1109/TNSRE.2014.2305520.
9
Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):549-58. doi: 10.1109/TNSRE.2013.2287383. Epub 2013 Oct 25.
10
Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees.
IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10. doi: 10.1109/TNSRE.2013.2278411. Epub 2013 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验