Smith Lauren H, Kuiken Todd A, Hargrove Levi J
IEEE Trans Biomed Eng. 2016 Apr;63(4):737-46. doi: 10.1109/TBME.2015.2469741. Epub 2015 Aug 20.
The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees.
Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control.
The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability.
Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.
本研究的目的是评估线性回归模型从肌内肌电图(EMG)解码肌肉共同激活模式的能力,并为虚拟三自由度手腕/手部系统提供同步肌电控制。将该方法的性能与使用肌内EMG的传统肌电假肢方法(并行双位点控制)的同步控制进行比较,这种方法要求使用者独立调节残肢中的单个肌肉,这对截肢者来说可能具有挑战性。
在虚拟的菲茨定律任务中,对8名健全受试者的线性回归控制进行了评估,并与8名使用并行双位点控制的受试者的表现进行了比较。一项离线分析还评估了不同类型的训练数据如何影响线性回归控制的预测准确性。
两种控制系统表现出相似的总体性能;然而,线性回归方法在需要使用所有三个自由度的目标上表现出更好的性能,而并行双位点控制在只需要使用一个自由度的目标上表现出更好的性能。使用线性回归控制的受试者可以更轻松地同时激活多个自由度,但在试图分离单个自由度时经常会出现意外动作。离线分析还表明,用于训练线性回归系统的方法可能会影响可控性。
使用肌内EMG的线性回归肌电控制为手腕和手部的三自由度同步控制提供了一种替代并行双位点控制的方法。这两种方法在可控性方面表现出不同的优势,突出了在提供同步控制和根据需要分离单个自由度的能力之间的权衡。