Suppr超能文献

一种自适应多模态控制策略,用于减轻肌电模式识别中的肢体位置效应。

An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition.

机构信息

Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, 80797 Munich, Germany.

Department of Informatics, Technical University of Munich, 85748 Garching bei München, Germany.

出版信息

Sensors (Basel). 2021 Nov 7;21(21):7404. doi: 10.3390/s21217404.

Abstract

Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset-i.e., representing variations in limb position or external loads-to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.

摘要

在过去几十年中,模式识别算法在上肢假肢肌电控制领域显示出了很有前景的结果,并且现在正逐渐被应用于商业设备中。一种广泛使用的方法是基于一个分类器,它将特定的输入值分配给选定的手部运动。虽然这种方法在每个类别中都能保证良好的性能和鲁棒性,但它在适应实际应用中遇到的不同条件方面仍然存在局限性,例如肢体位置或外部负载的变化。本文提出了一种基于模式识别分类器的自适应方法,该方法利用了一个增强的数据集,即代表肢体位置或外部负载变化的数据集,以便选择性地适应代表性不足的变化。该方法使用十个健全志愿者的一系列目标达成控制测试进行了评估。结果表明,与作为基准模型使用的经典模式识别分类器相比,自适应算法的中位数完成率>3.33%更高。特定于主体的性能表明适应后控制有改进的潜力,完成率<13%;并且在许多情况下,适应点能够在类内提供新的信息。这些初步结果表明了所提出方法的潜力,并鼓励进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/719f/8587119/05b11cc5baff/sensors-21-07404-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验