Suppr超能文献

用于预测肿瘤治疗结果的稳健特征选择。

Robust feature selection to predict tumor treatment outcome.

作者信息

Mi Hongmei, Petitjean Caroline, Dubray Bernard, Vera Pierre, Ruan Su

机构信息

QUANTification en Imagerie Fonctionnelle - Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (EA4108 - FR CNRS 3638), University of Rouen, 22, Boulevard GAMBETTA, 76183 Rouen, France.

QUANTification en Imagerie Fonctionnelle - Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (EA4108 - FR CNRS 3638), University of Rouen, 22, Boulevard GAMBETTA, 76183 Rouen, France.

出版信息

Artif Intell Med. 2015 Jul;64(3):195-204. doi: 10.1016/j.artmed.2015.07.002. Epub 2015 Aug 14.

Abstract

OBJECTIVE

Recurrence of cancer after treatment increases the risk of death. The ability to predict the treatment outcome can help to design the treatment planning and can thus be beneficial to the patient. We aim to select predictive features from clinical and PET (positron emission tomography) based features, in order to provide doctors with informative factors so as to anticipate the outcome of the patient treatment.

METHODS

In order to overcome the small sample size problem of datasets usually met in the medical domain, we propose a novel wrapper feature selection algorithm, named HFS (hierarchical forward selection), which searches forward in a hierarchical feature subset space. Feature subsets are iteratively evaluated with the prediction performance using SVM (support vector machine). All feature subsets performing better than those at the preceding iteration are retained. Moreover, as SUV (standardized uptake value) based features have been recognized as significant predictive factors for a patient outcome, we propose to incorporate this prior knowledge into the selection procedure to improve its robustness and reduce its computational cost.

RESULTS

Two real-world datasets from cancer patients are included in the evaluation. We extract dozens of clinical and PET-based features to characterize the patient's state, including SUV parameters and texture features. We use leave-one-out cross-validation to evaluate the prediction performance, in terms of prediction accuracy and robustness. Using SVM as the classifier, our HFS method produces accuracy values of 100% and 94% on the two datasets, respectively, and robustness values of 89% and 96%. Without accuracy loss, the prior-based version (pHFS) improves the robustness up to 100% and 98% on the two datasets, respectively.

CONCLUSIONS

Compared with other feature selection methods, the proposed HFS and pHFS provide the most promising results. For our HFS method, we have empirically shown that the addition of prior knowledge improves the robustness and accelerates the convergence.

摘要

目的

癌症治疗后的复发会增加死亡风险。预测治疗结果的能力有助于制定治疗计划,从而对患者有益。我们旨在从临床特征和基于正电子发射断层扫描(PET)的特征中选择预测性特征,以便为医生提供信息性因素,从而预测患者的治疗结果。

方法

为了克服医学领域中通常遇到的数据集样本量小的问题,我们提出了一种新颖的包装器特征选择算法,称为分层前向选择(HFS),它在分层特征子集空间中向前搜索。使用支持向量机(SVM)对特征子集进行预测性能的迭代评估。保留所有比前一次迭代表现更好的特征子集。此外,由于基于标准化摄取值(SUV)的特征已被认为是患者预后的重要预测因素,我们建议将此先验知识纳入选择过程,以提高其稳健性并降低计算成本。

结果

评估中纳入了来自癌症患者的两个真实世界数据集。我们提取了数十个基于临床和PET的特征来表征患者的状态,包括SUV参数和纹理特征。我们使用留一法交叉验证来评估预测性能,包括预测准确性和稳健性。使用SVM作为分类器,我们的HFS方法在两个数据集上的准确率分别为100%和94%,稳健性值分别为89%和96%。在不损失准确性的情况下,基于先验知识的版本(pHFS)在两个数据集上分别将稳健性提高到100%和98%。

结论

与其他特征选择方法相比,所提出的HFS和pHFS提供了最有前景的结果。对于我们的HFS方法,我们通过实验表明,添加先验知识可提高稳健性并加速收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验