Suppr超能文献

基于放射组学和信念函数理论的癌症患者治疗结果预测

Treatment Outcome Prediction for Cancer Patients based on Radiomics and Belief Function Theory.

作者信息

Wu Jian, Lian Chunfeng, Ruan Su, Mazur Thomas R, Mutic Sasa, Anastasio Mark A, Grigsby Perry W, Vera Pierre, Li Hua

机构信息

Department of Radiation Oncology, Washington University, Saint louis, MO 63110 USA.

Laboratoire LITIS (EA 4108), Equipe Quantif, University of Rouen, France.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):216-224. doi: 10.1109/TRPMS.2018.2872406. Epub 2018 Sep 27.

Abstract

In this study, we proposed a new radiomics-based treatment outcome prediction model for cancer patients. The prediction model is developed based on belief function theory (BFT) and sparsity learning to address the challenges of redundancy, heterogeneity, and uncertainty of radiomic features, and relatively small-sized and unbalanced training samples. The model first selects the most predictive feature subsets from relatively large amounts of radiomic features extracted from pre- and/or in-treatment positron emission tomography (PET) images and available clinical and demographic features. Then an evidential k-nearest neighbor (EK-NN) classifier is proposed to utilize the selected features for treatment outcome prediction. Twenty-five stage II-III lung, 36 esophagus, 63 stage II-III cervix, and 45 lymphoma cancer patient cases were included in this retrospective study. Performance and robustness of the proposed model were assessed with measures of feature selection stability, outcome prediction accuracy, and receiver operating characteristics (ROC) analysis. Comparison with other methods were conducted to demonstrate the feasibility and superior performance of the proposed model.

摘要

在本研究中,我们为癌症患者提出了一种基于放射组学的新治疗结果预测模型。该预测模型基于信念函数理论(BFT)和稀疏学习开发,以应对放射组学特征的冗余性、异质性和不确定性,以及相对较小规模和不平衡的训练样本等挑战。该模型首先从治疗前和/或治疗中的正电子发射断层扫描(PET)图像中提取的大量放射组学特征以及可用的临床和人口统计学特征中选择最具预测性的特征子集。然后提出了一种证据k近邻(EK-NN)分类器,利用所选特征进行治疗结果预测。这项回顾性研究纳入了25例II-III期肺癌、36例食管癌、63例II-III期宫颈癌和45例淋巴瘤癌患者病例。通过特征选择稳定性、结果预测准确性和受试者操作特征(ROC)分析等指标评估了所提出模型的性能和稳健性。与其他方法进行了比较,以证明所提出模型的可行性和优越性能。

相似文献

1
Treatment Outcome Prediction for Cancer Patients based on Radiomics and Belief Function Theory.
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):216-224. doi: 10.1109/TRPMS.2018.2872406. Epub 2018 Sep 27.
2
Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction.
Med Image Anal. 2016 Aug;32:257-68. doi: 10.1016/j.media.2016.05.007. Epub 2016 May 19.
3
Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer.
Med Phys. 2021 Mar;48(3):1226-1238. doi: 10.1002/mp.14684. Epub 2021 Feb 6.
6
Value of pre-therapy F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer.
Eur J Nucl Med Mol Imaging. 2020 May;47(5):1137-1146. doi: 10.1007/s00259-019-04592-1. Epub 2019 Nov 14.
7
Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics.
Med Phys. 2020 Jun;47(5):2197-2205. doi: 10.1002/mp.14104. Epub 2020 Mar 16.

引用本文的文献

1
Semiquantitative 2-[F]FDG PET/CT-based parameters role in lymphoma.
Front Med (Lausanne). 2024 Dec 18;11:1515040. doi: 10.3389/fmed.2024.1515040. eCollection 2024.
2
Radiomic and Volumetric Measurements as Clinical Trial Endpoints-A Comprehensive Review.
Cancers (Basel). 2022 Oct 17;14(20):5076. doi: 10.3390/cancers14205076.
5
Improved Prognosis of Treatment Failure in Cervical Cancer with Nontumor PET/CT Radiomics.
J Nucl Med. 2022 Jul;63(7):1087-1093. doi: 10.2967/jnumed.121.262618. Epub 2021 Oct 28.
7
Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise.
ACM Comput Surv. 2020 Jun;53(2). doi: 10.1145/3379504. Epub 2020 Mar 13.
9
A Systematic Review of PET Textural Analysis and Radiomics in Cancer.
Diagnostics (Basel). 2021 Feb 23;11(2):380. doi: 10.3390/diagnostics11020380.

本文引用的文献

1
Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction.
Med Image Anal. 2016 Aug;32:257-68. doi: 10.1016/j.media.2016.05.007. Epub 2016 May 19.
3
Radiomics: Images Are More than Pictures, They Are Data.
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
4
Robust feature selection to predict tumor treatment outcome.
Artif Intell Med. 2015 Jul;64(3):195-204. doi: 10.1016/j.artmed.2015.07.002. Epub 2015 Aug 14.
5
6
Machine learning applications in cancer prognosis and prediction.
Comput Struct Biotechnol J. 2014 Nov 15;13:8-17. doi: 10.1016/j.csbj.2014.11.005. eCollection 2015.
8
Pretreatment metabolic tumour volume is predictive of disease-free survival and overall survival in patients with oesophageal squamous cell carcinoma.
Eur J Nucl Med Mol Imaging. 2014 Nov;41(11):2008-16. doi: 10.1007/s00259-014-2839-y. Epub 2014 Jul 19.
10
Advanced statistical matrices for texture characterization: application to cell classification.
IEEE Trans Biomed Eng. 2014 Mar;61(3):630-7. doi: 10.1109/TBME.2013.2284600. Epub 2013 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验