Chamam Amel, Wisniewski-Dyé Florence, Comte Gilles, Bertrand Cédric, Prigent-Combaret Claire
UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France.
Université de Lyon, 69622, Lyon, France.
Planta. 2015 Dec;242(6):1439-52. doi: 10.1007/s00425-015-2382-5. Epub 2015 Aug 25.
Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives. Plants' growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant-bacteria biotic interactions.
对植物次生代谢产物进行分析有助于区分水稻与细菌之间建立的不同类型的生态相互作用。水稻通过改变其黄酮类化合物和羟基肉桂酸衍生物的含量来响应生态上不同的细菌。植物与土壤细菌群体建立的生物相互作用对植物的生长和生理有强烈影响。植物能够感知并相应地响应生态上不同的细菌,通过诱导针对病原体的防御途径来防止寄生相互作用,并通过根系分泌物刺激与根相关的有益或共生细菌的生长。预计植物次生代谢在这种调控中起主要作用。然而,同一植物对合作细菌、共生细菌和有害细菌的次生代谢产物反应迄今尚未进行过比较。将促进植物生长的根际细菌(PGPR)脂环酸芽孢杆菌4B对两个水稻品种(西加隆和日本晴)次生代谢产物谱的影响与水稻病原菌稻瘟病菌AU6208(细菌性穗枯病的病原菌)和共生环境细菌大肠杆菌B6的影响进行了比较。通过反相高效液相色谱(RP-HPLC)分析水稻根和地上部分的提取物。主成分分析(PCA)确定了具有判别性的次生代谢产物,并通过质谱对其进行了表征。代谢谱的直接比较表明,每种细菌生态相互作用通过改变大量黄酮类化合物和羟基肉桂酸(HCA)衍生物的含量,诱导了水稻次生代谢在质量和数量上的明显变化。次生代谢根据品种和相互作用类型而有所不同,这表明次生代谢分析对于研究植物-细菌生物相互作用具有重要意义。