Suppr超能文献

使用种族多样化的国际华法林药物遗传学联盟队列数据库对九种基于统计模型的华法林药物遗传学给药算法进行比较。

Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database.

作者信息

Liu Rong, Li Xi, Zhang Wei, Zhou Hong-Hao

机构信息

Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.

出版信息

PLoS One. 2015 Aug 25;10(8):e0135784. doi: 10.1371/journal.pone.0135784. eCollection 2015.

Abstract

OBJECTIVE

Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort.

METHODS

MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling.

RESULTS

BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84-8.96 mg/week, mean percentage within 20%: 45.88%-46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly higher mean percentage within 20%, and lower MAE (all p values < 0.05) than MLR in the low- and high- dose ranges.

CONCLUSION

Overall, machine learning-based techniques, BART, MARS and SVR performed superior than MLR in warfarin pharmacogenetic dosing. Differences of algorithms' performances exist among the races. Moreover, machine learning-based algorithms tended to perform better in the low- and high- dose ranges than MLR.

摘要

目的

已有报道称在基于药物遗传学算法的华法林剂量计算中应用了多元线性回归(MLR)和机器学习技术。然而,这些算法在不同种族群体中的性能从未得到客观评估和比较。在这项基于文献的研究中,我们在一个种族多样化的大型队列中比较了八种机器学习技术与MLR的性能。

方法

将MLR、人工神经网络(ANN)、回归树(RT)、多元自适应回归样条(MARS)、增强回归树(BRT)、支持向量回归(SVR)、随机森林回归(RFR)、套索回归(LAR)和贝叶斯加法回归树(BART)应用于国际华法林药物遗传学联盟数据库队列中的华法林剂量算法。通过对80%随机选择患者进行逐步回归获得的协变量用于开发算法。为了比较这些算法的性能,在其余20%的患者中计算预测剂量落在实际剂量20%范围内的患者的平均百分比(20%内平均百分比)和平均绝对误差(MAE)。比较了这些技术在不同种族中的性能以及治疗性华法林的剂量范围。经过100轮重采样后获得了稳健的结果。

结果

在整个队列中,BART、MARS和SVR在统计学上无显著差异,且显著优于所有其他方法(MAE:8.84 - 8.96毫克/周,20%内平均百分比:45.88% - 46.35%)。在白人人群中,MARS和BART的20%内平均百分比高于MLR,平均MAE低于MLR(所有p值<0.05)。在亚洲人群中,SVR、BART、MARS和LAR的表现与MLR相同。在黑人人群中,MLR和LAR表现最佳。当根据华法林剂量范围对患者进行分组时,除ANN和LAR外,所有机器学习技术在低剂量和高剂量范围内的20%内平均百分比均显著高于MLR,且MAE更低(所有p值<0.05)。

结论

总体而言,在华法林药物遗传学剂量计算中,基于机器学习的技术BART、MARS和SVR的表现优于MLR。算法性能在不同种族之间存在差异。此外,基于机器学习的算法在低剂量和高剂量范围内的表现往往优于MLR。

相似文献

2
Comparative performance of warfarin pharmacogenetic algorithms in Chinese patients.
Thromb Res. 2012 Sep;130(3):435-40. doi: 10.1016/j.thromres.2012.02.003. Epub 2012 Feb 27.
5
Comparison of warfarin pharmacogenetic dosing algorithms in a racially diverse large cohort.
Pharmacogenomics. 2011 Jan;12(1):125-34. doi: 10.2217/pgs.10.168.
6
Machine Learning Algorithm for Predicting Warfarin Dose in Caribbean Hispanics Using Pharmacogenetic Data.
Front Pharmacol. 2020 Jan 22;10:1550. doi: 10.3389/fphar.2019.01550. eCollection 2019.
7
Ensemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dose.
PLoS One. 2018 Oct 19;13(10):e0205872. doi: 10.1371/journal.pone.0205872. eCollection 2018.

引用本文的文献

2
The polygenic implication of clopidogrel responsiveness: Insights from platelet reactivity analysis and next-generation sequencing.
PLoS One. 2024 Jul 11;19(7):e0306445. doi: 10.1371/journal.pone.0306445. eCollection 2024.
3
Optimizing warfarin dosing for patients with atrial fibrillation using machine learning.
Sci Rep. 2024 Feb 24;14(1):4516. doi: 10.1038/s41598-024-55110-9.
5
Deep compartment models: A deep learning approach for the reliable prediction of time-series data in pharmacokinetic modeling.
CPT Pharmacometrics Syst Pharmacol. 2022 Jul;11(7):934-945. doi: 10.1002/psp4.12808. Epub 2022 May 27.
8
A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring.
Nat Biomed Eng. 2025 Apr;9(4):445-454. doi: 10.1038/s41551-023-01115-0. Epub 2023 Nov 6.
9
Individualized prediction of chronic kidney disease for the elderly in longevity areas in China: Machine learning approaches.
Front Public Health. 2022 Oct 21;10:998549. doi: 10.3389/fpubh.2022.998549. eCollection 2022.
10

本文引用的文献

2
Effect of CYP2C9-VKORC1 interaction on warfarin stable dosage and its predictive algorithm.
J Clin Pharmacol. 2015 Mar;55(3):251-7. doi: 10.1002/jcph.392. Epub 2014 Sep 16.
3
Prediction of optimal warfarin maintenance dose using advanced artificial neural networks.
Pharmacogenomics. 2014 Jan;15(1):29-37. doi: 10.2217/pgs.13.212.
4
Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method.
Eur J Clin Pharmacol. 2014 Mar;70(3):265-73. doi: 10.1007/s00228-013-1617-2. Epub 2013 Dec 3.
5
Improvement of adequate use of warfarin for the elderly using decision tree-based approaches.
Methods Inf Med. 2014;53(1):47-53. doi: 10.3414/ME13-01-0027. Epub 2013 Oct 18.
8
Development and comparison of a warfarin-dosing algorithm for Korean patients with atrial fibrillation.
Clin Ther. 2011 Oct;33(10):1371-80. doi: 10.1016/j.clinthera.2011.09.004. Epub 2011 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验