Liu K E, Lo C-L, Hu Y-H
Ya-Han Hu, Department of Information Management and Graduate Institute of Healthcare Information Management, National Chung Cheng University, 168 University Road, Min-Hsiung Chia-Yi 62102, Taiwan, E-mail:
Methods Inf Med. 2014;53(1):47-53. doi: 10.3414/ME13-01-0027. Epub 2013 Oct 18.
Due to the narrow therapeutic range and high drug-to-drug interactions (DDIs), improving the adequate use of warfarin for the elderly is crucial in clinical practice. This study examines whether the effectiveness of using warfarin among elderly inpatients can be improved when machine learning techniques and data from the laboratory information system are incorporated.
Having employed 288 validated clinical cases in the DDI group and 89 cases in the non-DDI group, we evaluate the prediction performance of seven classification techniques, with and without an Adaptive Boosting (AdaBoost) algorithm. Measures including accuracy, sensitivity, specificity and area under the curve are used to evaluate model performance.
Decision tree-based classifiers outperform other investigated classifiers in all evaluation measures. The classifiers supplemented with AdaBoost can generally improve the performance. In addition, weight, congestive heart failure, and gender are among the top three critical variables affecting prediction accuracy for the non-DDI group, while age, ALT, and warfarin doses are the most influential factors for the DDI group.
Medical decision support systems incorporating decision tree-based approaches improve predicting performance and thus may serve as a supplementary tool in clinical practice. Information from laboratory tests and inpatients' history should not be ignored because related variables are shown to be decisive in our prediction models, especially when the DDIs exist.
由于华法林的治疗窗狭窄且药物相互作用(DDIs)发生率高,在临床实践中提高老年人对华法林的合理使用至关重要。本研究探讨当纳入机器学习技术和实验室信息系统数据时,老年住院患者使用华法林的有效性是否能得到提高。
我们在药物相互作用组采用了288例经过验证的临床病例,在非药物相互作用组采用了89例病例,评估了七种分类技术在有无自适应增强(AdaBoost)算法情况下的预测性能。使用包括准确率、灵敏度、特异性和曲线下面积在内的指标来评估模型性能。
基于决策树的分类器在所有评估指标上均优于其他研究的分类器。补充了AdaBoost的分类器通常能提高性能。此外,体重、充血性心力衰竭和性别是影响非药物相互作用组预测准确性的前三个关键变量,而年龄、谷丙转氨酶(ALT)和华法林剂量是药物相互作用组最具影响力的因素。
纳入基于决策树方法的医学决策支持系统可提高预测性能,因此可作为临床实践中的辅助工具。实验室检查信息和住院患者病史不应被忽视,因为相关变量在我们的预测模型中显示出决定性作用,尤其是在存在药物相互作用的情况下。