Kocak Abdulkadir, Ashraf Muhammad Affawn, Metz Ricardo B
Department of Chemistry, University of Massachusetts Amherst , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
J Phys Chem A. 2015 Sep 17;119(37):9653-65. doi: 10.1021/acs.jpca.5b07079. Epub 2015 Sep 2.
Vibrational spectra are measured for Cu(+)(CH4)(Ar)2, Cu(+)(CH4)2(Ar), Cu(+)(CH4)n (n = 3-6), and Ag(+)(CH4)n (n = 1-6) in the C-H stretching region (2500-3100 cm(-1)) using photofragment spectroscopy. Spectra are obtained by monitoring loss of Ar or CH4. Interaction with the metal ion produces substantial red shifts in the C-H stretches of proximate hydrogens. The magnitude of the shift reflects the metal-methane distance and the coordination to the metal ion of the methane hydrogens (η(2) or η(3)). The structures of the complexes are determined by comparing the measured spectra with spectra calculated for candidate geometries using the B3LYP and CAM-B3LYP density functionals with 6-311++G(3df,3pd) and aug-cc-pVTZ-PP basis sets. Because of the d(10) electronic configuration of the metal ions, the complexes are expected to adopt symmetric structures, which is confirmed by the experiments. All of the complexes have η(2) hydrogen coordination in the first shell, in accord with theoretical predictions; second-shell ligands sometimes show η(3) hydrogen coordination. The vibrational spectrum of Cu(+)(CH4)(Ar)2 shows extensive structure due to Fermi resonance between the lowest-frequency C-H stretch and overtones of the H-C-H bends. The Cu(+)(CH4) cluster has a smaller red shift in the lowest-frequency C-H stretch than M(+)(CH4), M(+) = Co(+) (d(8)) and Ni(+) (d(9)). Although all three ions have similar binding energies, the metal-ligand electrostatic interaction is largest for Cu(+), while the contribution from covalent interactions is largest for Co(+). The larger ionic radius of Ag(+) leads to a larger metal-ligand distance and weaker interaction, resulting in substantially smaller red shifts than in the Cu(+) complexes. The Cu(+)(CH4)2 and Ag(+)(CH4)2 clusters have symmetrical structures, with the methanes on opposite sides of the metal, while Cu(+)(CH4)3 and Ag(+)(CH4)3 adopt symmetrical, trigonal planar structures with all M-C distances equal. For Cu(+)(CH4)4, the tetrahedral structure dominates the observed spectrum, although a trigonal pyramidal structure may contribute; however, only the tetrahedral structure is observed for Ag(+)(CH4)4. The structures of Cu(+)(CH4)n and Ag(+)(CH4)n differ for clusters with n > 4. For copper complexes, these are primarily formed by adding outer-shell methane ligand(s) to the tetrahedral n = 4 core. The observed spectra of the larger Ag(+) clusters are dominated by symmetrical structures in which all of the Ag-C distances are similar: Ag(+)(CH4)5 has a trigonal bipyramidal geometry and Ag(+)(CH4)6 is octahedral.
使用光解离光谱法在C-H伸缩振动区域(2500 - 3100 cm⁻¹)测量了Cu⁺(CH₄)(Ar)₂、Cu⁺(CH₄)₂(Ar)、Cu⁺(CH₄)ₙ(n = 3 - 6)和Ag⁺(CH₄)ₙ(n = 1 - 6)的振动光谱。通过监测Ar或CH₄的损失来获得光谱。与金属离子的相互作用会使相邻氢原子的C-H伸缩振动产生显著的红移。红移的大小反映了金属 - 甲烷的距离以及甲烷氢原子与金属离子的配位情况(η²或η³)。通过将测量光谱与使用B3LYP和CAM - B3LYP密度泛函以及6 - 311++G(3df,3pd)和aug - cc - pVTZ - PP基组为候选几何结构计算的光谱进行比较,确定了配合物的结构。由于金属离子的d¹⁰电子构型,预计配合物会采用对称结构,实验证实了这一点。所有配合物在第一配位层都有η²氢配位,这与理论预测一致;第二配位层配体有时显示η³氢配位。Cu⁺(CH₄)(Ar)₂的振动光谱由于最低频率的C-H伸缩振动与H-C-H弯曲振动的泛频之间的费米共振而呈现出丰富的结构。Cu⁺(CH₄)簇在最低频率的C-H伸缩振动中的红移比M⁺(CH₄)(M⁺ = Co⁺(d⁸)和Ni⁺(d⁹))小。尽管这三种离子具有相似的结合能,但Cu⁺的金属 - 配体静电相互作用最大,而Co⁺的共价相互作用贡献最大。Ag⁺较大的离子半径导致更大的金属 - 配体距离和较弱的相互作用,从而导致红移比Cu⁺配合物小得多。Cu⁺(CH₄)₂和Ag⁺(CH₄)₂簇具有对称结构,甲烷位于金属的相对两侧,而Cu⁺(CH₄)₃和Ag⁺(CH₄)₃采用对称的三角平面结构,所有M - C距离相等。对于Cu⁺(CH₄)₄,尽管三角锥结构可能有贡献,但观察到的光谱以四面体结构为主;然而,对于Ag⁺(CH₄)₄仅观察到四面体结构。对于n > 4的簇,Cu⁺(CH₄)ₙ和Ag⁺(CH₄)ₙ的结构不同。对于铜配合物,这些主要是通过向四面体n = 4核心添加外层甲烷配体形成的。较大的Ag⁺簇观察到的光谱以对称结构为主,其中所有Ag - C距离相似:Ag⁺(CH₄)₅具有三角双锥几何构型,Ag⁺(CH₄)₆是八面体构型。