Suppr超能文献

基于振动光谱和密度泛函理论的M(CH)(M = Ti,V)结构

Structures of M(CH) (M = Ti, V) Based on Vibrational Spectroscopy and Density Functional Theory.

作者信息

Kozubal Justine, Heck Tristan, Metz Ricardo B

机构信息

Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.

出版信息

J Phys Chem A. 2021 May 20;125(19):4143-4151. doi: 10.1021/acs.jpca.1c02217. Epub 2021 May 7.

Abstract

Photofragment spectroscopy is used to measure the vibrational spectra of M(CH)(Ar) and M(CH) (M = Ti, V; = 1-4) in the C-H stretching region (2550-3100 cm). Spectra were measured by monitoring the loss of Ar from M(CH)(Ar) and loss of CH from the larger clusters. The experimental spectra are then compared to simulations done at the B3LYP/6-311++G(3df,3pd) level of theory to identify the structures of the ions. The spectra all have a peak near 2800 cm due to the symmetric C-H stretch of the hydrogens adjacent to the metal. Some complexes also have a smaller peak due to the corresponding antisymmetric stretch. Most complexes also have a peak near 3000 cm due to the C-H stretch of hydrogens pointing away from the metal. The symmetric proximate C-H stretches of M(CH)(Ar) to M(CH) are red-shifted from the symmetric stretch in bare CH by 149, 152, 128, and 107 cm for the titanium complexes and 164, 175, 158, and 146 cm, respectively, for the vanadium complexes. In M(CH)(Ar) (M = Ti, V), the heavy atoms are collinear. Ti(CH)(Ar) has η methane hydrogen coordination (∠M-C-H = 180°), while V(CH)(Ar) has η (∠M-C-H = 124°). The = 2 complexes have C-M-C linear. Ti(CH) has symmetry with η CH while V(CH) has methane coordination intermediate between η and η (∠M-C-H = 156°). Both the M(CH) (M = Ti, V) complexes have symmetry with one methane farther away from the metal in an η binding orientation and two methanes close to the metal with a nearly η methane for vanadium and coordination between η and η CH for titanium (∠M-C-H = 150°). In Ti(CH) and V(CH) all of the methanes have η coordination. The titanium complex has a distorted square planar geometry with two different Ti-C bond lengths and the vanadium complex is square planar.

摘要

光碎片光谱法用于测量M(CH)(Ar)和M(CH)(M = Ti、V;= 1 - 4)在C - H伸缩振动区域(2550 - 3100 cm)的振动光谱。通过监测M(CH)(Ar)中Ar的损失以及较大团簇中CH的损失来测量光谱。然后将实验光谱与在B3LYP/6 - 311++G(3df,3pd)理论水平下进行的模拟结果进行比较,以确定离子的结构。由于与金属相邻的氢的对称C - H伸缩振动,所有光谱在2800 cm附近都有一个峰。一些配合物由于相应的反对称伸缩振动也有一个较小的峰。大多数配合物由于远离金属的氢的C - H伸缩振动在3000 cm附近也有一个峰。对于钛配合物,M(CH)(Ar)到M(CH)的对称近邻C - H伸缩振动相对于裸CH中的对称伸缩振动分别红移了149、152、128和107 cm,对于钒配合物分别红移了164、175、1,58和146 cm。在M(CH)(Ar)(M = Ti、V)中,重原子共线。Ti(CH)(Ar)具有η型甲烷氢配位(∠M - C - H = 180°),而V(CH)(Ar)具有η型(∠M - C - H = 124°)。= 2的配合物具有C - M - C直线型。Ti(CH)具有对称性,为η型CH,而V(CH)具有介于η型和η型之间的甲烷配位(∠M - C - H = 156°)。M(CH)(M = Ti、V)配合物都具有对称性,其中一个甲烷以η型结合取向远离金属,两个甲烷靠近金属,钒的甲烷配位接近η型,钛的甲烷配位介于η型和η型CH之间(∠M - C - H = 150°)。在Ti(CH)和V(CH)中,所有甲烷都具有η型配位。钛配合物具有扭曲的平面正方形几何结构,有两种不同的Ti - C键长,钒配合物是平面正方形。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验