de Flores Robin, La Joie Renaud, Chételat Gaël
INSERM U1077, France; Université de Caen Basse-Normandie, UMR-S1077, France; Ecole Pratique des Hautes Etudes, UMR-S1077, France; CHU de Caen, U1077, Caen, France.
INSERM U1077, France; Université de Caen Basse-Normandie, UMR-S1077, France; Ecole Pratique des Hautes Etudes, UMR-S1077, France; CHU de Caen, U1077, Caen, France.
Neuroscience. 2015 Nov 19;309:29-50. doi: 10.1016/j.neuroscience.2015.08.033. Epub 2015 Aug 22.
Hippocampal atrophy, as evidenced using magnetic resonance imaging (MRI), is one of the most validated, easily accessible and widely used biomarkers of Alzheimer's disease (AD). However, its imperfect sensitivity and specificity have highlighted the need to improve the analysis of MRI data. Based on neuropathological data showing a differential vulnerability of hippocampal subfields to AD processes, neuroimaging researchers have tried to capture corresponding morphological changes within the hippocampus. The present review provides an overview of the methodological developments that allow the assessment of hippocampal subfield morphology in vivo, and summarizes the results of studies looking at the effects of AD and normal aging on these structures. Most studies highlighted a focal atrophy of the CA1 subfield in the early (predementia or even preclinical) stages of AD, before atrophy becomes more widespread at the dementia stage, consistent with the pathological literature. Preliminary studies have indicated that looking at this focal atrophy pattern rather than standard whole hippocampus volumetry improves diagnostic accuracy at the mild cognitive impairment (MCI) stage. However, controversies remain regarding changes in hippocampal subfield structure in normal aging and regarding correlations between specific subfield volume and memory abilities, very likely because of the strong methodological variability between studies. Overall, hippocampal subfield analysis has proven to be a promising technique in the study of AD. However, harmonization of segmentation protocols and studies on larger samples are needed to enable accurate comparisons between studies and to confirm the clinical utility of these techniques.
磁共振成像(MRI)显示的海马萎缩是阿尔茨海默病(AD)最有效、最易获取且使用广泛的生物标志物之一。然而,其敏感性和特异性欠佳凸显了改进MRI数据分析的必要性。基于神经病理学数据显示海马亚区对AD进程存在不同程度的易损性,神经影像学研究人员试图捕捉海马内部相应的形态学变化。本综述概述了可在体内评估海马亚区形态的方法学进展,并总结了研究AD和正常衰老对这些结构影响的研究结果。大多数研究强调,在AD的早期(痴呆前期甚至临床前期),CA1亚区出现局灶性萎缩,在痴呆阶段萎缩变得更为广泛之前,这与病理学文献一致。初步研究表明,观察这种局灶性萎缩模式而非标准的全海马体积测量可提高轻度认知障碍(MCI)阶段的诊断准确性。然而,关于正常衰老过程中海马亚区结构的变化以及特定亚区体积与记忆能力之间的相关性仍存在争议,这很可能是因为研究之间方法学差异很大。总体而言,海马亚区分析已被证明是研究AD的一种有前景的技术。然而,需要统一分割方案并开展更大样本量的研究,以便能够在不同研究之间进行准确比较,并确认这些技术的临床实用性。