Suppr超能文献

利用脑部磁共振成像(MRI)和可穿戴传感器数据的多模态机器学习方法用于神经退行性疾病的早期检测。

Multi-modal machine learning approach for early detection of neurodegenerative diseases leveraging brain MRI and wearable sensor data.

作者信息

Li Andrew, Lian Jie, Vardhanabhuti Varut

机构信息

Department of Radiology, Queen Mary Hospital, Hong Kong SAR, China.

Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China.

出版信息

PLOS Digit Health. 2025 Apr 25;4(4):e0000795. doi: 10.1371/journal.pdig.0000795. eCollection 2025 Apr.

Abstract

Neurodegenerative diseases, such as Alzheimer's and Parkinson's Disease, pose a significant healthcare burden to the aging population. Structural MRI brain parameters and accelerometry data from wearable devices have been proven to be useful predictors for these diseases but have been separately examined in the prior literature. This study aims to determine whether a combination of accelerometry data and MRI brain parameters may improve the detection and prognostication of Alzheimer's and Parkinson's disease, compared with MRI brain parameters alone. A cohort of 19,793 participants free of neurodegenerative disease at the time of imaging and accelerometry data capture from the UK Biobank with longitudinal follow-up was derived to test this hypothesis. Relevant structural MRI brain parameters, accelerometry data collected from wearable devices, standard polygenic risk scores and lifestyle information were obtained. Subsequent development of neurodegenerative diseases among participants was recorded (mean follow-up time of 5.9 years), with positive cases defined as those diagnosed at least one year after imaging. A machine learning algorithm (XGBoost) was employed to create prediction models for the development of neurodegenerative disease. A prediction model consisting of all factors, including structural MRI brain parameters, accelerometry data, PRS, and lifestyle information, achieved the highest AUC value (0.819) out of all tested models. A model that excluded MRI brain parameters achieved the lowest AUC value (0.688). Feature importance analyses revealed 18 out of 20 most important features were structural MRI brain parameters, while 2 were derived from accelerometry data. Our study demonstrates the potential utility of combining structural MRI brain parameters with accelerometry data from wearable devices to predict the incidence of neurodegenerative diseases. Future prospective studies across different populations should be conducted to confirm these study results and look for differences in predictive ability for various types of neurodegenerative diseases.

摘要

神经退行性疾病,如阿尔茨海默病和帕金森病,给老年人群带来了巨大的医疗负担。来自可穿戴设备的结构MRI脑参数和加速度计数据已被证明是这些疾病的有用预测指标,但在先前的文献中是分别进行研究的。本研究旨在确定与单独的MRI脑参数相比,加速度计数据和MRI脑参数的组合是否可以改善阿尔茨海默病和帕金森病的检测和预后。从英国生物银行中选取了一组19793名参与者,他们在成像和加速度计数据采集时没有神经退行性疾病,并进行了纵向随访,以检验这一假设。获取了相关的结构MRI脑参数、从可穿戴设备收集的加速度计数据、标准多基因风险评分和生活方式信息。记录了参与者中神经退行性疾病的后续发展情况(平均随访时间为5.9年),阳性病例定义为在成像后至少一年被诊断出的病例。采用机器学习算法(XGBoost)创建神经退行性疾病发展的预测模型。在所有测试模型中,由所有因素组成的预测模型,包括结构MRI脑参数、加速度计数据、PRS和生活方式信息,获得了最高的AUC值(0.819)。一个排除了MRI脑参数的模型获得了最低的AUC值(0.688)。特征重要性分析显示,20个最重要的特征中有18个是结构MRI脑参数,而2个来自加速度计数据。我们的研究表明,将结构MRI脑参数与可穿戴设备的加速度计数据相结合,对于预测神经退行性疾病的发病率具有潜在的实用性。未来应在不同人群中开展前瞻性研究,以证实这些研究结果,并寻找不同类型神经退行性疾病预测能力的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ba/12027105/8b4678ebc650/pdig.0000795.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验