Mohtasebzadeh Abdul Rahman, Ye Longfei, Crawford Thomas M
Smart State Center for Experimental Nanoscale Physics, Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA.
MagAssemble, Irmo, SC 29063, USA.
Int J Mol Sci. 2015 Aug 20;16(8):19769-79. doi: 10.3390/ijms160819769.
We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle-nanoparticle interactions to cluster-cluster interactions as opposed to feature-feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials.
我们研究了磁性纳米颗粒在垂直磁记录介质上记录的模板上的磁场定向自组装,并将特征宽度和高度量化为组装时间的函数。特征宽度由扫描电子显微镜(SEM)图像确定,而高度则通过原子力显微镜(AFM)获得。在短组装时间内,宽度约为150纳米,而高度约为14纳米,平均为单个纳米颗粒,长宽比为10:1。在长组装时间内,宽度接近550纳米,而平均高度增长到3个纳米颗粒,约为35纳米;长宽比为16:1。我们对这些自组装结构进行了磁力测量,观察到磁矩与磁场曲线的斜率随时间增加。这种增加表明磁性纳米颗粒的相互作用从纳米颗粒-纳米颗粒相互作用演变为簇-簇相互作用,而不是特征-特征相互作用。我们认为长宽比增加是因为垂直介质中记录区域之间的过渡附近磁场梯度最强。如果可以针对组装优化这些梯度,那么使用垂直记录模板组装复杂的异质材料就具有很大的潜力。