Ellefsen Kyle L, Dynes Joseph L, Parker Ian
Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, 92697, United States of America.
Department of Physiology & Biophysics, University of California Irvine, Irvine, CA, 92697, United States of America.
PLoS One. 2015 Aug 26;10(8):e0136055. doi: 10.1371/journal.pone.0136055. eCollection 2015.
Total internal reflection fluorescence (TIRF) microscopy is a powerful tool for visualizing near-membrane cellular structures and processes, including imaging of local Ca2+ transients with single-channel resolution. TIRF is most commonly implemented in epi-fluorescence mode, whereby laser excitation light is introduced at a spot near the periphery of the back focal plane of a high numerical aperture objective lens. However, this approach results in an irregular illumination field, owing to interference fringes and scattering and shadowing by cellular structures. We describe a simple system to circumvent these limitations, utilizing a pair of galvanometer-driven mirrors to rapidly spin the laser spot in a circle at the back focal plane of the objective lens, so that irregularities average out during each camera exposure to produce an effectively uniform field. Computer control of the mirrors enables precise scanning at 200 Hz (5ms camera exposure times) or faster, and the scan radius can be altered on a frame-by-frame basis to achieve near-simultaneous imaging in TIRF, widefield and 'skimming plane' imaging modes. We demonstrate the utility of the system for dynamic recording of local inositol trisphosphate-mediated Ca2+ signals and for imaging the redistribution of STIM and Orai proteins during store-operated Ca2+ entry. We further anticipate that it will be readily applicable for numerous other near-membrane studies, especially those involving fast dynamic processes.
全内反射荧光(TIRF)显微镜是一种用于可视化近膜细胞结构和过程的强大工具,包括以单通道分辨率对局部Ca2+瞬变进行成像。TIRF最常用于落射荧光模式,即激光激发光在高数值孔径物镜后焦平面周边附近的一点处引入。然而,由于干涉条纹以及细胞结构的散射和阴影,这种方法会导致照明场不规则。我们描述了一个简单的系统来规避这些限制,该系统利用一对检流计驱动的镜子在物镜的后焦平面上使激光光斑快速旋转成一个圆,这样在每次相机曝光期间不规则性会平均化,从而产生一个有效均匀的场。对镜子的计算机控制能够以200 Hz(相机曝光时间为5毫秒)或更快的速度进行精确扫描,并且扫描半径可以逐帧改变,以实现在TIRF、宽场和“掠面”成像模式下的近同时成像。我们展示了该系统在动态记录局部三磷酸肌醇介导的Ca2+信号以及在储存式Ca2+内流过程中对STIM和Orai蛋白重新分布进行成像方面的实用性。我们进一步预期它将很容易应用于许多其他近膜研究,特别是那些涉及快速动态过程的研究。