Suppr超能文献

基于开源深度学习方法的多任务细菌图像分析 DeepBacs

DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches.

机构信息

Department of Natural Products in Organismic Interaction, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.

出版信息

Commun Biol. 2022 Jul 9;5(1):688. doi: 10.1038/s42003-022-03634-z.

Abstract

This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research.

摘要

本工作展示并指导如何使用一系列最先进的人工神经网络,利用最近开发的 ZeroCostDL4Mic 平台分析细菌显微镜图像。我们生成了一个图像数据集数据库,用于训练各种图像分析任务的网络,并提出了数据采集和管理以及模型训练的策略。我们展示了不同的深度学习 (DL) 方法来分割不同细菌物种的明场和荧光图像,使用目标检测对延时成像数据中的不同生长阶段进行分类,并进行 DL 辅助的抗生素处理细胞表型分析。为了展示 DL 增强低光毒性活细胞显微镜的能力,我们展示了图像去噪如何使研究人员能够在更快和更长时间的成像中获得高保真数据。最后,细胞膜的人工标记和超分辨率图像的预测允许对细胞形状和细胞内目标进行精确映射。我们专门构建的训练和测试数据集有助于新手用户的培训,使他们能够快速探索如何通过 DL 分析他们的数据。我们希望这为 DL 在微生物学中的高效应用奠定基础,并促进用于细菌细胞生物学和抗生素研究的工具的创建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a0d/9271087/e0d40a7fb007/42003_2022_3634_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验