Suppr超能文献

慢性病共病的治疗前分类

THE PRE-THERAPEUTIC CLASSIFICATION OF CO-MORBIDITY IN CHRONIC DISEASE.

作者信息

Feinstein A R

机构信息

Eastern Research Support Center, West Haven Veterans Administration Hospital, Connecticut, USA.

出版信息

J Chronic Dis. 1970 Dec;23(7):455-68. doi: 10.1016/0021-9681(70)90054-8.

Abstract

In a patient with a particular index disease, the term co-morbidity refers to any additional co-existing ailment. The failure to classify and analyze co-morbid diseases has led to many difficulties in medical statistics. The omissions create misleading data in mortality rates for a general population, and in fatality rates for an individual disease. In particular, neglect of co-morbidity may cause spurious comparisons during the planning and evaluation of treatment for patients with apparently identical diagnoses. Co-morbidity can alter the clinical course of patients with the same diagnosis by affecting the time of detection, prognostic anticipations, therapeutic selection, and post-therapeutic outcome of the index disease. In addition to these direct effects on clinical course, co-morbidity plays a role in intellectual decisions that may alter the statistical categories of diagnostic classification. These decisions deal with the attribution of symptoms in 'polypathic' patients and with the selection of an inception manifestation for the index disease. In order to maintain consistency in the management of research data, certain principles of co-morbid differential diagnosis can be developed according to anatomic relation, pathogenetic interplay, and chronometric features of the diseases under consideration.

摘要

在患有某种特定索引疾病的患者中,“共病”一词指的是任何其他同时存在的疾病。未能对共病疾病进行分类和分析给医学统计带来了许多困难。这些遗漏在一般人群的死亡率以及个别疾病的病死率方面产生了误导性数据。特别是,忽视共病可能会在对诊断明显相同的患者进行治疗规划和评估时导致虚假比较。共病可通过影响索引疾病的检测时间、预后预期、治疗选择和治疗后结果来改变相同诊断患者的临床病程。除了对临床病程的这些直接影响外,共病在可能改变诊断分类统计类别的智力决策中也起作用。这些决策涉及“多病共存”患者症状的归因以及索引疾病起始表现的选择。为了在研究数据管理中保持一致性,可以根据所考虑疾病的解剖关系、发病机制相互作用和计时特征制定共病鉴别诊断的某些原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验